RESUMO
PURPOSE: This study aims to evaluate the performance of two latest generation matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems in routine laboratory settings, focusing on turnaround time (TAT), time to results (TTR), hands-on time, and identification rate. METHODS: We conducted a time and motion study on three workflow scenarios to simulate different laboratory settings. Overall, 618 bacterial isolates from a tertiary hospital's laboratory were processed using the VITEK MS PRIME (bioMérieux) and the MALDI Biotyper sirius (Bruker Daltonics) and their corresponding databases VITEK IVD Database 3.2 and MBT reference library 12. RESULTS: The target preparation process showed no significant difference in TAT, but the Biotyper workflow had a shorter hands-on time by 3 to 6 min. In the measurement process, TTR was three to five times shorter for the Biotyper sirius while hands-on time was significantly shorter for VITEK MS PRIME (approximately 1.5 min per target). The identification rate without retesting was 97.9% for VITEK MS PRIME and 98.9% for Biotyper sirius. Both systems achieved 100% agreement at genus and 96.2% at species level. CONCLUSION: Both systems exhibited excellent identification rates for routine bacterial isolates. Due to its high speed, the Biotyper sirius is suited for laboratories with high sample throughput and a workflow designed for processing larger batches. The VITEK MS PRIME, with its "load and go" system accommodating up to 16 targets, reduces hands-on time, making it a reasonable choice for laboratories with fewer identifications overall but a higher number of targets and a workflow designed for parallel processing on different workstations.