Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Nanobiomed Res ; 2(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36419640

RESUMO

Microporous annealed particle (MAP) hydrogels have emerged as a versatile biomaterial platform for regenerative medicine. MAP hydrogels have been used for the delivery of cells and organoids but often require annealing post injection by an external source. We engineered an injectable, self-annealing MAP hydrogel with reversible interparticle linkages based on guest-host functionalized polyethylene glycol maleimide (PEG-MAL) microgels. We evaluated the effect of guest-host linkages on different types of microgels fabricated by either batch emulsion or mechanical fragmentation methods. Batch emulsion generated small spherical microgels with controllable 10-100 µm diameters and mechanical fragmentation generated irregular microgels with larger diameters (100-200 µm). Spherical microgels (15 µm) showed self-healing behavior and completely recovered from high strain while fragmented microgels (133 µm) did not recover. Guest-host interactions significantly contributed to the mechanical properties of spherical microgels but had no effect on fragmented microgels. Spherical microgels were superior to the fragmented microgels for co-injection of immune cells and pancreatic islets due to their lower force of injection, demonstrating more homogeneously distributed cells and greater cell viability after injection. Based on these studies, the spherical guest-host MAP hydrogels provide a controllable, injectable scaffold for engineered microenvironments and cell delivery applications.

2.
Acta Biomater ; 94: 160-172, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31154058

RESUMO

Designing scaffolds for polyplex-mediated therapeutic gene delivery has a number of applications in regenerative medicine, such as for tissue repair after wounding or disease. Microporous annealed particle (MAP) hydrogels are an emerging class of porous biomaterials, formed by annealing microgel particles to one another in situ to form a porous bulk scaffold. MAP gels have previously been shown to support and enhance proliferative and regenerative behaviors both in vitro and in vivo. Therefore, coupling gene delivery with MAP hydrogels presents a promising approach for therapy development. To optimize MAP hydrogels for gene delivery, we studied the effects of particle size and stiffness as well as adhesion potential on cell surface area and proliferation and then correlated this information with the ability of cells to become transfected while seeded in these scaffolds. We find that the void space size as well as the presentation of integrin ligands influence transfection efficiency. This work demonstrates the importance of considering MAP material properties for guiding cell spreading, proliferation, and gene transfer. STATEMENT OF SIGNIFICANCE: Microporous annealed particle (MAP) hydrogels are an emerging class of porous biomaterials, formed by annealing spherical microgels together in situ, creating a porous scaffold from voids between the packed beads. Here we investigated the effects of MAP physical and adhesion properties on cell spreading, proliferation, and gene transfer in fibroblasts. Particle size and void space influenced spreading and proliferation, with larger particles improving transfection. MAP stiffness was also important, with stiffer scaffolds increasing proliferation, spreading, and transfection, contrasting studies in nonporous hydrogels that showed an inverse response. Last, RGD ligand concentration and presentation modulated spreading similar to non-MAP hydrogels. These findings reveal relationships between MAP properties and cell processes, suggesting how MAP can be tuned to improve future design approaches.


Assuntos
Adesão Celular , Proliferação de Células , Fibroblastos/citologia , Técnicas de Transferência de Genes , Hidrogéis/química , Porosidade , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Terapia Genética , Humanos , Ácido Hialurônico/química , Integrinas/química , Ligantes , Norbornanos/química , Oligopeptídeos/química , Oscilometria , Tamanho da Partícula , Polietilenoglicóis/química , Medicina Regenerativa , Reologia , Aderências Teciduais , Alicerces Teciduais/química , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA