Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(14): e18546, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046458

RESUMO

Heart failure (HF) prognosis depends on various regulatory factors; microRNA-128 (miR-128) is identified as a regulator of cardiac fibrosis, contributing to HF. MyoD family inhibitor (MDFI), which is reported to be related with Wnt/ß-catenin pathway, is supposed to be regulated by miR-128. This study investigates the interaction between miR-128 and MDFI in cardiomyocyte development and elucidates its role in heart injury. Gene expression profiling assessed miR-128's effect on MDFI expression in HF using qPCR and Western blot analysis. Luciferase assays studied the direct interaction between miR-128 and MDFI. MTT, transwell, and immunohistochemistry evaluated the effects of miR-128 and MDFI on myocardial cells in mice HF. Genescan and luciferase assays validated the interaction between miR-128 and MDFI sequences. miR-128 mimics significantly reduced MDFI expression at mRNA and protein levels with decrease rate of 55%. Overexpression of miR-128 promoted apoptosis with the increase rate 65% and attenuated cardiomyocyte proliferation, while MDFI upregulation significantly enhanced proliferation. Elevated miR-128 levels upregulated Wnt1 and ß-catenin expression, whereas increased MDFI levels inhibited these expressions. Histological analysis with haematoxylin and eosin staining revealed that miR-128 absorption reduced MDFI expression, hindering cell proliferation and cardiac repair, with echocardiography showing corresponding improvements in cardiac function. Our findings suggest miR-128 interacts with MDFI, playing a crucial role in HF management by modulating the Wnt1/ß-catenin pathway. Suppression of miR-128 could promote cardiomyocyte proliferation, highlighting the potential value of the miR-128/MDFI interplay in HF treatment.


Assuntos
Apoptose , Cardiomegalia , Proliferação de Células , Insuficiência Cardíaca , MicroRNAs , Miócitos Cardíacos , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proliferação de Células/genética , Camundongos , Masculino , Humanos , Via de Sinalização Wnt/genética , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , beta Catenina/metabolismo , beta Catenina/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética
2.
Biochem Biophys Res Commun ; 671: 215-224, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307704

RESUMO

Muscle fiber is the basic unit of skeletal muscle with strong self-adaptability, and its type is closely related to meat quality. Myod family inhibitor (Mdfi) has the function of regulating myogenic regulatory factors during cell differentiation, but how Mdfi regulates muscle fiber type transformation in myoblasts is still unclear. In the present study, we constructed overexpressing and interfering with Mdfi C2C12 cell models by lipofection. The immunofluorescence, quantitative real-time PCR (qPCR), and western blot results show that the elevated MDFI promoted mitochondrial biogenesis, aerobic metabolism and the calcium level by activating CaMKK2 and AMPK phosphorylation and then stimulated the conversion of C2C12 cells from fast glycolytic to slow oxidative type. In addition, after inhibiting IP3R and RYR channels, the higher MDFI reversed the blockage of calcium release from the endoplasmic reticulum by calcium channel receptor inhibitors and increased intracellular calcium levels. Therefore, we propose that the higher MDFI promotes muscle fiber types conversion through the calcium signaling pathway. These findings further broaden our understanding of the regulatory mechanism of MDFI in muscle fiber type transformation. Furthermore, our results suggest potential therapeutic targets for skeletal muscle and metabolic-related diseases.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Diferenciação Celular
3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762415

RESUMO

PIEZO channels PIEZO1 and PIEZO2 are the newly identified mechanosensitive, non-selective cation channels permeable to Ca2+. In higher vertebrates, PIEZO1 is expressed ubiquitously in most tissues and cells while PIEZO2 is expressed more specifically in the peripheral sensory neurons. PIEZO channels contribute to a wide range of biological behaviors and developmental processes, therefore driving significant attention in the effort to understand their molecular properties. One prominent property of PIEZO channels is their rapid inactivation, which manifests itself as a decrease in channel open probability in the presence of a sustained mechanical stimulus. The lack of the PIEZO channel inactivation is linked to various mechanopathologies emphasizing the significance of studying this PIEZO channel property and the factors affecting it. In the present review, we discuss the mechanisms underlying the PIEZO channel inactivation, its modulation by the interaction of the channels with lipids and/or proteins, and how the changes in PIEZO inactivation by the channel mutations can cause a variety of diseases in animals and humans.

4.
Cell Biol Int ; 46(12): 2198-2206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116024

RESUMO

MyoD family inhibitor (MDFI) is a myogenic transcription factor regulatory protein. MDFI has been proven to be upregulated and to promote cell proliferation in colorectal cancer. However, the role of MDFI in gastric cancer (GC) is unclear. In this study, MDFI expression in GC tissues and cell lines was examined by quantitative real-time PCR and western blot. Cell Counting Kit-8 assay, clone formation assay, and 5-ethynyl-2'-deoxyuridine assay were used to evaluate GC cell proliferation. Glycolysis was assessed by measuring glucose consumption and lactate and ATP production using commercial assay kits. Western blot was used to detect the expression levels of glycolytic key proteins and Wnt/ß-catenin pathway proteins. To activate Wnt/ß-catenin signaling, GC cells were treated with CHIR-99021. We found that MDFI expression was increased in GC tumor tissues and cells with a positive correlation with poor survival. Knockdown of MDFI inhibited the increase in GC cell proliferation and glycolysis induced by Helicobacter pylori. Helicobacter pylori infection promoted MDFI expression and activated Wnt/ß-catenin signaling. What is more, activation of the Wnt/ß-catenin pathway remarkably reversed the effect of knocking down MDFI on GC cells. Further studies found that MDFI participated in GC cell proliferation and glycolysis by regulating the Wnt/ß-catenin pathway, thereby affecting the development of GC. In conclusion, we demonstrated for the first time that knockdown of MDFI inhibited the increase in GC cell proliferation and glycolysis by regulating the Wnt/ß-catenin pathway. MDFI may be a new target for the clinical treatment of GC.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/metabolismo , beta Catenina/metabolismo , Neoplasias Gástricas/metabolismo , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Linhagem Celular Tumoral , Via de Sinalização Wnt , Glicólise , Proteínas Wnt/metabolismo , Proliferação de Células , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores de Regulação Miogênica
5.
Cell Physiol Biochem ; 46(6): 2271-2283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734192

RESUMO

BACKGROUND/AIMS: Skeletal muscle plays an essential role in the body movement. However, injuries to the skeletal muscle are common. Lifelong maintenance of skeletal muscle function largely depends on preserving the regenerative capacity of muscle. Muscle satellite cells proliferation, differentiation, and myoblast fusion play an important role in muscle regeneration after injury. Therefore, understanding of the mechanisms associated with muscle development during muscle regeneration is essential for devising the alternative treatments for muscle injury in the future. METHODS: Edu staining, qRT-PCR and western blot were used to evaluate the miR-27b effects on pig muscle satellite cells (PSCs) proliferation and differentiation in vitro. Then, we used bioinformatics analysis and dual-luciferase reporter assay to predict and confirm the miR-27b target gene. Finally, we elucidate the target gene function on muscle development in vitro and in vivo through Edu staining, qRT-PCR, western blot, H&E staining and morphological observation. RESULT: miR-27b inhibits PSCs proliferation and promotes PSCs differentiation. And the miR-27b target gene, MDFI, promotes PSCs proliferation and inhibits PSCs differentiation in vitro. Furthermore, interfering MDFI expression promotes mice muscle regeneration after injury. CONCLUSION: our results conclude that miR-27b promotes PSCs myogenesis by targeting MDFI. These results expand our understanding of muscle development mechanism in which miRNAs and genes work collaboratively in regulating skeletal muscle development. Furthermore, this finding has implications for obtaining the alternative treatments for patients with the muscle injury.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Desenvolvimento Muscular , Fatores de Regulação Miogênica/genética , Células Satélites de Músculo Esquelético/citologia , Suínos/genética , Animais , Proliferação de Células , Células Cultivadas , Masculino , Células Satélites de Músculo Esquelético/metabolismo , Suínos/fisiologia
6.
Cancer Biol Ther ; 25(1): 2314324, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38375821

RESUMO

Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.


Assuntos
Neoplasias Colorretais , Integrina beta4 , Calinina , Fatores de Regulação Miogênica , Proteínas Proto-Oncogênicas c-akt , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Integrina beta4/genética , Integrina beta4/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Oxaliplatina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Calinina/genética , Calinina/metabolismo
7.
Front Oncol ; 12: 1005962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300089

RESUMO

Background: Approximately 80% of lung cancers are non-small cell lung cancers (NSCLC). Lung adenocarcinoma (LUAD) is the main subtype of NSCLC. The incidence and mortality of lung cancer are also increasing yearly. Myogenic differentiation family inhibitor (MDFI) as a transcription factor, its role in lung cancer has not yet been clarified. Methods: LUAD data were downloaded from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO), analyzed and plotted using the R language. Associations between Clinical information and MDFI expression were assessed using logistic regression analyses to explore the effects of MDFI on LUAD. Two sets of tissue microarrays (TMAs) further confirmed the overexpression of MDFI in LUAD and its impact on prognosis. In addition, we examined the correlation between MDFI and immune infiltration. To investigate the effect of MDFI on the biological behavior of LUAD tumor cells by GSEA and GO/KEGG analysis. The survival status and somatic mutational characteristics of patients according to MDFI levels were depicted and analyzed. Results: Expression of high MDFI in LUAD tissues via analyzing TCGA dataset (P <0.001). Kaplan-Meier survival analysis indicated a poor prognosis for those patients with LUAD who had upregulated MDFI expression levels (P <0.001). This was also verified by two groups of TMAs (P=0.024). Using logistic statistics analysis, MDFI was identified as an independent predictive factor and was associated with poor prognosis in LUAD (P <0.001, P =0.021). Assessment of clinical characteristics, tumor mutation burden (TMB), and tumor microenvironment (TME) between high- and low-expression score groups showed lower TMB, richer immune cell infiltration, and better prognosis in the low-risk group. Conclusion: This study showed that MDFI was overexpressed in LUAD and was significantly associated with poor prognosis, indicating that MDFI may be used as a potential novel biomarker for the diagnosis and prognosis of LUAD. MDFI is associated with immune infiltration of LUAD and it is reasonable to speculate that it plays an important role in tumor proliferation and spread. In view of the significant differences in MDFI expression between different biological activities, LUAD patients with MDFI overexpression may obtain more precise treatment strategies in the clinic.

8.
Front Mol Biosci ; 8: 675993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34738011

RESUMO

Mdfi, an inhibitor of myogenic regulatory factors, is involved in myoblast myogenic development and muscle fiber type transformation. However, the regulatory network of Mdfi regulating myoblasts has not been revealed. In this study, we performed microRNAs (miRNAs)-seq on Mdfi overexpression (Mdfi-OE) and wild-type (WT) C2C12 cells to establish the regulatory networks. Comparative analyses of Mdfi-OE vs. WT identified 66 differentially expressed miRNAs (DEMs). Enrichment analysis of the target genes suggested that DEMs may be involved in myoblast differentiation and muscle fiber type transformation through MAPK, Wnt, PI3K-Akt, mTOR, and calcium signaling pathways. miRNA-mRNA interaction networks were suggested along with ten hub miRNAs and five hub genes. We also identified eight hub miRNAs and eleven hub genes in the networks of muscle fiber type transformation. Hub miRNAs mainly play key regulatory roles in muscle fiber type transformation through the PI3K-Akt, MAPK, cAMP, and calcium signaling pathways. Particularly, the three hub miRNAs (miR-335-3p, miR-494-3p, and miR-709) may be involved in both myogenic differentiation and muscle fiber type transformation. These hub miRNAs and genes might serve as candidate biomarkers for the treatment of muscle- and metabolic-related diseases.

9.
Front Cell Dev Biol ; 9: 605875, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33553177

RESUMO

Muscle development requires myoblast differentiation and muscle fiber formation. Myod family inhibitor (Mdfi) inhibits myogenic regulatory factors in NIH3T3 cells, but how Mdfi regulates myoblast myogenic development is still unclear. In the present study, we constructed an Mdfi-overexpression (Mdfi-OE) C2C12 cell line by the CRISPR/Cas9 system and performed RNA-seq on Mdfi-OE and wild-type (WT) C2C12 cells. The RNA-seq results showed that the calcium signaling pathway was the most significant. We also established the regulatory networks of Mdfi-OE on C2C12 cell differentiation and muscle fiber type transformation and identified hub genes. Further, both RNA-seq and experimental verification demonstrated that Mdfi promoted C2C12 cell differentiation by upregulating the expression of Myod, Myog, and Myosin. We also found that the positive regulation of Mdfi on fast-to-slow-twitch muscle fiber transformation is mediated by Myod, Camk2b, and its downstream genes, such as Pgc1a, Pdk4, Cs, Cox4, Acadm, Acox1, Cycs, and Atp5a1. In conclusion, our results demonstrated that Mdfi promotes C2C12 cell differentiation and positively modulates fast-to-slow-twitch muscle fiber transformation. These findings further our understanding of the regulatory mechanisms of Mdfi in myogenic development and muscle fiber type transformation. Our results suggest potential therapeutic targets for muscle- and metabolic-related diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA