Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 79-98, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31800327

RESUMO

DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.


Assuntos
DNA/imunologia , Imunidade Inata , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Biomarcadores , Citoplasma/imunologia , Citoplasma/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo
2.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238587

RESUMO

Cyclic GMP-AMP synthase (cGAS) senses double-stranded DNA and synthesizes the second messenger cyclic GMP-AMP (cGAMP), which binds to mediator of IRF3 activation (MITA) and initiates MITA-mediated signaling, leading to induction of type I interferons (IFNs) and other antiviral effectors. Human cytomegalovirus (HCMV), a widespread and opportunistic pathogen, antagonizes the host antiviral immune response to establish latent infection. Here, we identified HCMV tegument protein UL94 as an inhibitor of the cGAS-MITA-mediated antiviral response. Ectopic expression of UL94 impaired cytosolic double-stranded DNA (dsDNA)- and DNA virus-triggered induction of type I IFNs and enhanced viral replication. Conversely, UL94 deficiency potentiated HCMV-induced transcription of type I IFNs and downstream antiviral effectors and impaired viral replication. UL94 interacted with MITA, disrupted the dimerization and translocation of MITA, and impaired the recruitment of TBK1 to the MITA signalsome. These results suggest that UL94 plays an important role in the immune evasion of HCMV.IMPORTANCE Human cytomegalovirus (HCMV), a large double-stranded DNA (dsDNA) virus, encodes more than 200 viral proteins. HCMV infection causes irreversible abnormalities of the central nervous system in newborns and severe syndromes in organ transplantation patients or AIDS patients. It has been demonstrated that HCMV has evolved multiple immune evasion strategies to establish latent infection. Previous studies pay more attention to the mechanism by which HCMV evades immune response in the early phase of infection. In this study, we identified UL94 as a negative regulator of the innate immune response, which functions in the late phase of HCMV infection.


Assuntos
Proteínas do Capsídeo/imunologia , Citomegalovirus/imunologia , Genoma Viral , Evasão da Resposta Imune , Proteínas de Membrana/imunologia , Proteínas Serina-Treonina Quinases/imunologia , RNA Interferente Pequeno/genética , Proteínas do Capsídeo/genética , Núcleo Celular/imunologia , Núcleo Celular/virologia , GMP Cíclico/imunologia , GMP Cíclico/metabolismo , Citomegalovirus/genética , Citomegalovirus/crescimento & desenvolvimento , Citosol/imunologia , Citosol/virologia , DNA/imunologia , DNA/metabolismo , Fibroblastos/imunologia , Fibroblastos/virologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/genética , Cultura Primária de Células , Ligação Proteica , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , RNA Interferente Pequeno/imunologia , Transdução de Sinais , Sequenciamento do Exoma
3.
Cell Mol Immunol ; 20(12): 1403-1412, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37932533

RESUMO

Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Transdução de Sinais , Imunidade Inata , Nucleotidiltransferases/metabolismo , Mitocôndrias/metabolismo , Doenças Autoimunes/patologia , Neoplasias/patologia
4.
Cell Insight ; 1(1): 100001, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37192983

RESUMO

The innate immune systems detect pathogens via pattern-recognition receptors including nucleic acid sensors and non-nucleic acid sensors. Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS, also known as MB21D1) is a cytosolic DNA sensor that recognizes double-stranded DNA (dsDNA) and catalyzes the synthesis of 2',3'-cGAMP. Subsequently, 2',3'-cGAMP binds to the adaptor protein mediator of IRF3 activation (MITA, also known as STING, MPYS, ERIS, and TMEM173) to activate downstream signaling cascades. The cGAS-MITA/STING signaling critically mediates immune responses against DNA viruses, retroviruses, bacteria, and protozoan parasites. In addition, recent discoveries have extended our understanding of the roles of the cGAS-MITA/STING pathway in autoimmune diseases and cancers. Here, we summarize the identification and activation of cGAS and MITA/STING, present the updated functions and regulatory mechanisms of cGAS-MITA/STING signaling and provide a comprehensive understanding of the cGAS-MITA/STING axis in autoimmune diseases and cancers.

5.
Cell Mol Immunol ; 18(5): 1186-1196, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33785841

RESUMO

Mitochondrial stress (mitostress) triggered by viral infection or mitochondrial dysfunction causes the release of mitochondrial DNA (mtDNA) into the cytosol and activates the cGAS-mediated innate immune response. The regulation of mtDNA release upon mitostress remains uncharacterized. Here, we identified mitochondria-associated vaccinia virus-related kinase 2 (VRK2) as a key regulator of this process. VRK2 deficiency inhibited the induction of antiviral genes and caused earlier and higher mortality in mice after viral infection. Upon viral infection, VRK2 associated with voltage-dependent anion channel 1 (VDAC1) and promoted VDAC1 oligomerization and mtDNA release, leading to the cGAS-mediated innate immune response. VRK2 was also required for mtDNA release and cGAS-mediated innate immunity triggered by nonviral factors that cause Ca2+ overload but was not required for the cytosolic nucleic acid-triggered innate immune response. Thus, VRK2 plays a crucial role in the mtDNA-triggered innate immune response and may be a potential therapeutic target for infectious and autoimmune diseases associated with mtDNA release.


Assuntos
Antivirais/metabolismo , DNA Mitocondrial/metabolismo , Imunidade Inata , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/deficiência , Canal de Ânion 1 Dependente de Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA