Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 268: 116226, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367493

RESUMO

To interfere the Menin-MLL interaction using small molecular inhibitors has been shown as new treatment of several special hematological malignancies. Herein, a series of Menin-MLL interaction inhibitors with pyrrolo[2,3-d]pyrimidine scaffold were designed, synthesized and evaluated. Among them, compound A6 exhibited potent binding affinity with an IC50 value of 0.38 µM, and strong anti-proliferative activity against MV4-11 cells with an IC50 value of 1.07 µM. Further study showed A6 reduced the transcriptional levels of HOXA9 and MEIS1 genes. Moreover, A6 induced cellular apoptosis, arrested the cell cycle in G0/G1 phase, and reversed the differentiation arrest in a concentration-dependent manner. This study suggested compound A6 was as a novel potent Menin-MLL interaction inhibitor, and it proved that introduction of 4-amino pyrrolo[2,3-d]pyrimidine to occupy the P10 hydrophobic pocket was new idea for design of novel Menin-MLL interaction inhibitors.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia/tratamento farmacológico , Pirimidinas/farmacologia
2.
Ann Lab Med ; 36(2): 85-100, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709255

RESUMO

Chromosomal translocations of the human mixed-lineage leukemia (MLL) gene have been analyzed for more than 20 yr at the molecular level. So far, we have collected about 80 direct MLL fusions (MLL-X alleles) and about 120 reciprocal MLL fusions (X-MLL alleles). The reason for the higher amount of reciprocal MLL fusions is that the excess is caused by 3-way translocations with known direct fusion partners. This review is aiming to propose a solution for an obvious problem, namely why so many and completely different MLL fusion alleles are always leading to the same leukemia phenotypes (ALL, AML, or MLL). This review is aiming to explain the molecular consequences of MLL translocations, and secondly, the contribution of the different fusion partners. A new hypothesis will be posed that can be used for future research, aiming to find new avenues for the treatment of this particular leukemia entity.


Assuntos
Leucemia/genética , Alelos , Cromossomos Humanos X , Epigênese Genética , Humanos , Leucemia/classificação , Leucemia/patologia , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/genética , Estrutura Terciária de Proteína , Translocação Genética
3.
Cancer Chemother Pharmacol ; 77(1): 43-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26645404

RESUMO

PURPOSE: The metabolism and disposition of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was investigated in rat and dog. Metabolite profiles were compared with those from adult patients in the first-in-man phase 1 study as well as the cross-species metabolism observed in vitro. METHODS: EPZ-5676 was administered to rat and dog as a 24-h IV infusion of [(14)C]-EPZ-5676 for determination of pharmacokinetics, mass balance, metabolite profiling and biodistribution by quantitative whole-body autoradiography (QWBA). Metabolite profiling and identification was performed by radiometric and LC-MS/MS analysis. RESULTS: Fecal excretion was the major route of elimination, representing 79 and 81% of the total dose in and rat and dog, respectively. QWBA in rats showed that the radioactivity was well distributed in the body, except for the central nervous system, and the majority of radioactivity was eliminated from most tissues by 168 h. Fecal recovery of dose-related material in bile duct-cannulated animals as well as higher radioactivity concentrations in the wall of the large intestine relative to liver implicated intestinal secretion as well as biliary elimination. EPZ-5676 underwent extensive oxidative metabolism with the major metabolic pathways being hydroxylation of the t-butyl group (EPZ007769) and N-dealkylation of the central nitrogen. Loss of adenine from parent EPZ-5676 (M7) was observed only in rat and dog feces, suggesting the involvement of gut microbiota. In rat and dog, steady-state plasma levels of total radioactivity and parent EPZ-5676 were attained rapidly and maintained through the infusion period before declining rapidly on cessation of dosing. Unchanged EPZ-5676 was the predominant circulating species in rat, dog and man. CONCLUSIONS: The excretory and metabolic pathways for EPZ-5676 were very similar across species. Renal excretion of both parent EPZ-5676 and EPZ-5676-related material was low, and in preclinical species fecal excretion of parent EPZ-5676 and EPZ007769 accounted for the majority of drug-related elimination.


Assuntos
Antineoplásicos/farmacocinética , Benzimidazóis/farmacocinética , Fezes/química , Metiltransferases/antagonistas & inibidores , Adulto , Animais , Antineoplásicos/administração & dosagem , Autorradiografia/métodos , Benzimidazóis/administração & dosagem , Cromatografia Líquida/métodos , Cães , Feminino , Histona-Lisina N-Metiltransferase , Humanos , Infusões Intravenosas , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Especificidade da Espécie , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual
4.
Oncotarget ; 7(23): 35341-52, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27175594

RESUMO

One hallmark of MLL-r leukemia is the highly specific gene expression signature indicative for commonly deregulated target genes. An usual read-out for this transcriptional deregulation is the HOXA gene cluster, where upregulated HOXA genes are detected in MLL-r AML and ALL patients. In case of t(4;11) leukemia, this simple picture becomes challenged, because these patients separate into HOXAhi- and HOXAlo-patients. HOXAlo-patients showed a reduced HOXA gene transcription, but instead overexpressed the homeobox gene IRX1. This transcriptional pattern was associated with a higher relapse rate and worse outcome. Here, we demonstrate that IRX1 binds to the MLL-AF4 complex at target gene promotors and counteract its promotor activating function. In addition, IRX1 induces transcription of HOXB4 and EGR family members. HOXB4 is usually a downstream target of c-KIT, WNT and TPO signaling pathways and necessary for maintaining and expanding in hematopoietic stem cells. EGR proteins control a p21-dependent quiescence program for hematopoietic stem cells. Both IRX1-dependend actions may help t(4;11) leukemia cells to establish a stem cell compartment. We also demonstrate that HDACi administration is functionally interfering with IRX1 and MLL-AF4, a finding which could help to improve new treatment options for t(4;11) patients.


Assuntos
Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Proteína de Leucina Linfoide-Mieloide/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Células HEK293 , Humanos , Proteínas de Fusão Oncogênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA