Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115401

RESUMO

Hepatic insulin resistance is a hallmark feature of nonalcoholic fatty liver disease and type-2 diabetes and significantly contributes to systemic insulin resistance. Abnormal activation of nutrient and stress-sensing kinases leads to serine/threonine phosphorylation of insulin receptor substrate (IRS) and subsequent IRS proteasome degradation, which is a key underlying cause of hepatic insulin resistance. Recently, members of the cullin-RING E3 ligases (CRLs) have emerged as mediators of IRS protein turnover, but the pathophysiological roles and therapeutic implications of this cellular signaling regulation is largely unknown. CRLs are activated upon cullin neddylation, a process of covalent conjugation of a ubiquitin-like protein called Nedd8 to a cullin scaffold. Here, we report that pharmacological inhibition of cullin neddylation by MLN4924 (Pevonedistat) rapidly decreases hepatic glucose production and attenuates hyperglycemia in mice. Mechanistically, neddylation inhibition delays CRL-mediated IRS protein turnover to prolong insulin action in hepatocytes. In vitro knockdown of either cullin 1 or cullin 3, but not other cullin members, attenuates insulin-induced IRS protein degradation and enhances cellular insulin signaling activation. In contrast, in vivo knockdown of liver cullin 3, but not cullin 1, stabilizes hepatic IRS and decreases blood glucose, which recapitulates the effect of MLN4924 treatment. In summary, these findings suggest that pharmacological inhibition of cullin neddylation represents a therapeutic approach for improving hepatic insulin signaling and lowering blood glucose.


Assuntos
Proteínas Culina/metabolismo , Ciclopentanos/farmacologia , Hiperglicemia/tratamento farmacológico , Insulina/metabolismo , Fígado/efeitos dos fármacos , Proteína NEDD8/metabolismo , Pirimidinas/farmacologia , Receptor de Insulina/metabolismo , Animais , Linhagem Celular , Hiperglicemia/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Ubiquitinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101976

RESUMO

Blood-brain barrier (BBB) breakdown and inflammation occurring at the BBB have a key, mainly a deleterious role in the pathophysiology of ischemic stroke. Neddylation is a ubiquitylation-like pathway that is critical in various cellular functions by conjugating neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) to target proteins. However, the roles of neddylation pathway in ischemic stroke remain elusive. Here, we report that NEDD8 conjugation increased during acute phase after ischemic stroke and was present in intravascular and intraparenchymal neutrophils. Inhibition of neddylation by MLN4924, also known as pevonedistat, inactivated cullin-RING E3 ligase (CRL), and reduced brain infarction and improved functional outcomes. MLN4924 treatment induced the accumulation of the CRL substrate neurofibromatosis 1 (NF1). By using virus-mediated NF1 silencing, we show that NF1 knockdown abolished MLN4924-dependent inhibition of neutrophil trafficking. These effects were mediated through activation of endothelial P-selectin and intercellular adhesion molecule-1 (ICAM-1), and blocking antibodies against P-selectin or anti-ICAM-1 antibodies reversed NF1 silencing-induced increase in neutrophil infiltration in MLN4924-treated mice. Furthermore, we found that NF1 silencing blocked MLN4924-afforded BBB protection and neuroprotection through activation of protein kinase C δ (PKCδ), myristoylated alanine-rich C-kinase substrate (MARCKS), and myosin light chain (MLC) in cerebral microvessels after ischemic stroke, and treatment of mice with the PKCδ inhibitor rottlerin reduced this increased BBB permeability. Our study demonstrated that increased neddylation promoted neutrophil trafficking and thus exacerbated injury of the BBB and stroke outcomes. We suggest that the neddylation inhibition may be beneficial in ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ciclopentanos/farmacologia , Proteína NEDD8/metabolismo , Proteínas do Tecido Nervoso , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirimidinas/farmacologia , Ubiquitina-Proteína Ligases , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/enzimologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Masculino , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo
3.
Immunol Rev ; 303(1): 119-137, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34046908

RESUMO

IgA is produced in large quantities at mucosal surfaces by IgA+ plasma cells (PC), protecting the host from pathogens, and restricting commensal access to the subepithelium. It is becoming increasingly appreciated that IgA+ PC are not constrained to mucosal barrier sites. Rather, IgA+ PC may leave these sites where they provide both host defense and immunoregulatory function. In this review, we will outline how IgA+ PC are generated within the mucosae and how they subsequently migrate to their "classical" effector site, the gut lamina propria. From there we provide examples of IgA+ PC displacement from the gut to other parts of the body, referencing examples during homeostasis and inflammation. Lastly, we will speculate on mechanisms of IgA+ PC displacement to other tissues. Our aim is to provide a new perspective on how IgA+ PC are truly fantastic beasts of the immune system and identify new places to find them.


Assuntos
Nódulos Linfáticos Agregados , Plasmócitos , Imunoglobulina A , Mucosa Intestinal , Linfonodos
4.
BMC Genomics ; 25(1): 254, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448814

RESUMO

BACKGROUND: Neddylation, an important post-translational modification (PTM) of proteins, plays a crucial role in follicular development. MLN4924 is a small-molecule inhibitor of the neddylation-activating enzyme (NAE) that regulates various biological processes. However, the regulatory mechanisms of neddylation in rabbit ovarian cells have not been emphasized. Here, the transcriptome and metabolome profiles in granulosa cells (GCs) treated with MLN4924 were utilized to identify differentially expressed genes, followed by pathway analysis to precisely define the altered metabolisms. RESULTS: The results showed that 563 upregulated and 910 downregulated differentially expressed genes (DEGs) were mainly enriched in pathways related to cancer, cell cycle, PI3K-AKT, progesterone-mediated oocyte maturation, and PPAR signaling pathway. Furthermore, we characterized that MLN4924 inhibits PPAR-mediated lipid metabolism, and disrupts the cell cycle by promoting the apoptosis and proliferation of GCs. Importantly, we found the reduction of several metabolites in the MLN4924 treated GCs, including glycerophosphocholine, arachidic acid, and palmitic acid, which was consistent with the deregulation of PPAR signaling pathways. Furthermore, the increased metabolites included 6-Deoxy-6-sulfo-D-glucono-1,5-lactone and N-Acetyl-D-glucosaminyldiphosphodolichol. Combined with transcriptome data analyses, we identified genes that strongly correlate with metabolic dysregulation, particularly those related to glucose and lipid metabolism. Therefore, neddylation inhibition may disrupt the energy metabolism of GCs. CONCLUSIONS: These results provide a foundation for in-depth research into the role and molecular mechanism of neddylation in ovary development.


Assuntos
Ciclopentanos , Receptores Ativados por Proliferador de Peroxissomo , Fosfatidilinositol 3-Quinases , Pirimidinas , Feminino , Animais , Coelhos , Células da Granulosa , Metabolismo dos Lipídeos
5.
Plant Biotechnol J ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39403866

RESUMO

Maize lethal necrosis (MLN), which is caused by maize chlorotic mottle virus along with a potyvirus, has threatened the food security of smallholders in sub-Saharan Africa. Mutations in eukaryotic translation initiation factors (eIFs), which also facilitate virus genome translation, are known to confer variable resistance against viruses. Following phylogenetic analysis, we selected two eIF4E proteins from maize as the most likely candidates to facilitate MLN infection. A knockout (KO) of each of the corresponding genes in elite but MLN-susceptible maize lines conferred only partial protection. Our inability to knockout both the genes together suggested that at least one was required for survival. When we edited (ED) the eIF4E genes in Mini Maize, however, the plants with the eif4e1-KO became highly resistant, whereas those with the eif4e2-KO remained susceptible. Neither of the causal viruses could be detected in the MLN-inoculated eif4e1-KO plants. The eIF4E2 cDNA in Mini Maize lacked the entire 4th exon, causing a 22-amino acid in-frame deletion, which shortened the protein to 198 amino acids. When we introduced mutations in the 4th exon of the eIF4E2 gene in two elite, MLN-susceptible lines pre-edited for an eif4e1-KO, we obtained as strong resistance against MLN as in eif4e1-KO Mini Maize. The MLN-inoculated lines with eif4e1-KO/eIF4E2-exon-4ED performed as well as the uninoculated wild-type lines. We demonstrate that the C-terminal 38 amino acids of eIF4E2 are dispensable for normal plant growth but are required for the multiplication of MLN viruses. Our discovery has wide applications across plant species for developing virus-resistant varieties.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39066808

RESUMO

PURPOSE: The angiotensin converting enzyme 2 (ACE2) plays a regulatory role in the cardiovascular system and serves SARS-CoV-2 as an entry receptor. The aim of this study was to synthesize and evaluate radiofluorinated derivatives of the ACE2 inhibitor MLN-4760. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were demonstrated to be suitable for non-invasive imaging of ACE2, potentially enabling a better understanding of its expression dynamics. METHODS: Computational molecular modeling, based on the structures of human ACE2 (hACE2) and mouse ACE2 (mACE2), revealed that the ACE2-binding modes of F-MLN-4760 and F-Aza-MLN-4760 were similar to that of MLN-4760. Co-crystallization of the hACE2/F-MLN-4760 protein complex was performed for confirmation. Displacement experiments using [3H]MLN-4760 enabled the determination of the binding affinities of the synthesized F-MLN-4760 and F-Aza-MLN-4760 to hACE2 expressed in HEK-ACE2 cells. Aryl trimethylstannane-based and pyridine-based radiofluorination precursors were synthesized and used for the preparation of the respective radiotracers. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were evaluated with regard to the uptake in HEK-ACE2 and HEK-ACE cells and in vitro binding to tissue sections of HEK-ACE2 xenografts and normal organs of mice. Biodistribution and PET/CT imaging studies of [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were performed using HEK-ACE2 and HEK-ACE xenografted nude mice. RESULTS: Crystallography data revealed an equal hACE2-binding mode for F-MLN-4760 as previously found for MLN-4760. Moreover, computer-based modeling indicated that similar binding to hACE2 and mACE2 holds true for both, F-MLN-4760 and F-Aza-MLN-4760, as is the case for MLN-4760. The IC50 values were three-fold and seven-fold higher for F-MLN-4760 and F-Aza-MLN-4760, respectively, than for MLN-4760. [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 were obtained in 1.4 ± 0.3 GBq and 0.5 ± 0.1 GBq activity with > 99% radiochemical purity in a 5.3% and 1.2% radiochemical yield, respectively. Uptake in HEK-ACE2 cells was higher for [18F]F-MLN-4760 (67 ± 9%) than for [18F]F-Aza-MLN-4760 (37 ± 8%) after 3-h incubation while negligible uptake was seen in HEK-ACE cells (< 0.3%). [18F]F-MLN-4760 and [18F]F-Aza-MLN-4760 accumulated specifically in HEK-ACE2 xenografts of mice (13 ± 2% IA/g and 15 ± 2% IA/g at 1 h p.i.) with almost no uptake observed in HEK-ACE xenografts (< 0.3% IA/g). This was confirmed by PET/CT imaging, which also visualized unspecific accumulation in the gall bladder and intestinal tract. CONCLUSION: Both radiotracers showed specific and selective binding to ACE2 in vitro and in vivo. [18F]F-MLN-4760 was, however, obtained in higher yields and the ACE2-binding affinity was superior over that of [18F]F-Aza-MLN-4760. [18F]F-MLN-4760 would, thus, be the candidate of choice for further development in view of its use for PET imaging of ACE2.

7.
Ann Hematol ; 103(8): 3247-3250, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888615

RESUMO

Here, we present a rare case of myeloproliferative neoplasms (MPN) with eosinophilia harboring both BCR::ABL1 and PDGFRB rearrangements, posing a classification dilemma. The patient exhibited clinical and laboratory features suggestive of chronic myeloid leukemia (CML) and myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK), highlighting the diagnostic challenges associated with overlapping phenotypes. Despite the complexity, imatinib treatment swiftly achieved deep molecular remission, underscoring the therapeutic efficacy of tyrosine kinase inhibitors in such scenarios. Furthermore, the rapid attainment of deep remission by this patient in response to imatinib closely resembles that observed in MLN-TK patients with PDGFRB rearrangements. Further research is warranted to elucidate the underlying mechanisms driving the coexistence of multiple oncogenic rearrangements in MPNs and to optimize therapeutic strategies for these complex cases.


Assuntos
Eosinofilia , Proteínas de Fusão bcr-abl , Mesilato de Imatinib , Transtornos Mieloproliferativos , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Humanos , Mesilato de Imatinib/uso terapêutico , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/complicações , Eosinofilia/genética , Eosinofilia/tratamento farmacológico , Proteínas de Fusão bcr-abl/genética , Rearranjo Gênico , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Feminino
8.
Ann Hematol ; 103(9): 3801-3804, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992279

RESUMO

ETV6::ABL1 fusion gene is a rare but recurrent genomic rearrangement in hematological malignancies with poor prognosis. Here, we report 1 case of Ph negative myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) who carry ETV6::ABL1 fusion gene. The patient achieved clinical remission after treatment with imatinib. However, disease progression of blast crisis was observed around 2 years later. The patient was treated with second-generation tyrosine kinase inhibitor of flumatinib, yielded a short term second therapeutic response. ETV6::ABL1 positive myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene fusions (MLN-TK) is rare and may be misdiagnosed by conventional cytogenetical analysis. Early treatment with TKIs, particularly second-generation TKIs, may be beneficial to improve treatment results.


Assuntos
Crise Blástica , Variante 6 da Proteína do Fator de Translocação ETS , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas c-ets , Humanos , Crise Blástica/tratamento farmacológico , Crise Blástica/genética , Proteínas de Fusão Oncogênica/genética , Masculino , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Inibidores de Proteínas Quinases/uso terapêutico , Pessoa de Meia-Idade , Mesilato de Imatinib/uso terapêutico , Aminopiridinas/uso terapêutico , Feminino
9.
Exp Cell Res ; 429(2): 113668, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245582

RESUMO

The close apposition between two different organelles is critical in essential processes such as ion homeostasis, signaling, and lipid transition. However, information related to the structural features of membrane contact sites (MCSs) is limited. This study used immuno-electron microscopy and immuno-electron tomography (I-ET) to analyze the two- and three-dimensional structures of the late endosome-mitochondria contact sites in placental cells. Filamentous structures or tethers were identified that connected the late endosomes and mitochondria. Lamp1 antibody-labeled I-ET revealed enrichment of tethers in the MCSs. The cholesterol-binding endosomal protein metastatic lymph node 64 (MLN64) encoded by STARD3 was required for the formation of this apposition. The distance of the late endosome-mitochondria contact sites was <20 nm, shorter than that in STARD3-knockdown cells (<150 nm). The perturbation of cholesterol egress from the endosomes induced by U18666A treatment produced a longer distance in the contact sites than that in knockdown cells. The late endosome-mitochondria tethers failed to form correctly in STARD3-knockdown cells. Our results unravel the role of MLN64 involved in MCSs between late endosomes and mitochondria in placental cells.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Feminino , Gravidez , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Placenta/metabolismo , Mitocôndrias/metabolismo , Endossomos/metabolismo , Membranas Mitocondriais/metabolismo , Colesterol/metabolismo
10.
J Virol ; 96(10): e0059822, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35510863

RESUMO

Posttranslational modifications (PTMs) of viral proteins play critical roles in virus infection. The role of neddylation in enterovirus 71 (EV71) replication remains poorly defined. Here, we showed that the structural protein VP2 of EV71 can be modified by neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) in an E3 ligase X-linked inhibitor of apoptosis protein (XIAP)-dependent manner. Mutagenesis and biochemical analyses mapped the neddylation site at lysine 69 (K69) of VP2 and demonstrated that neddylation reduced the stability of VP2. In agreement with the essential role of VP2 in viral replication, studies with EV71 reporter viruses with wild-type VP2 (enhanced green fluorescent protein [EGFP]-EV71) and a K69R mutant VP2 (EGFP-EV71-VP2 K69R) showed that abolishment of VP2 neddylation increased EV71 replication. In support of this finding, overexpression of NEDD8 significantly inhibited the replication of wild-type EV71 and EGFP-EV71, but not EGFP-EV71-VP2 K69R, whereas pharmacologic inhibition of neddylation with the NEDD8-activating enzyme inhibitor MLN4924 promoted the replication of EV71 in biologically relevant cell types. Our results thus support the notion that EV71 replication can be negatively regulated by host cellular and pathobiological cues through neddylation of VP2 protein. IMPORTANCE Neddylation is a ubiquitin-like posttranslational modification by conjugation of neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to specific proteins for regulation of their metabolism and biological activities. In this study, we demonstrated for the first time that EV71 VP2 protein is neddylated at K69 residue to promote viral protein degradation and consequentially suppress multiplication of the virus. Our findings advance knowledge related to the roles of VP2 in EV71 virulence and the neddylation pathway in the host restriction of EV71 infection.


Assuntos
Proteínas do Capsídeo , Enterovirus Humano A , Processamento de Proteína Pós-Traducional , Replicação Viral , Animais , Proteínas do Capsídeo/química , Linhagem Celular Tumoral , Chlorocebus aethiops , Enterovirus Humano A/fisiologia , Células HEK293 , Humanos , Proteína NEDD8/metabolismo , Células Vero , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
11.
Pharmacol Res ; 191: 106767, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061146

RESUMO

The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.


Assuntos
Glioblastoma , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo
12.
Arch Virol ; 169(1): 6, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081982

RESUMO

Neddylation is a post-translational modification that plays an important role not only in cancer development but also in regulating viral infection and replication. Upregulation of neddylation occurs in viral infections, and inhibition of neddylation can suppress viral replication. Neddylation is thought to enhance viral protein stability and replication. Neddylation has been reported to enhance the stability of the regulatory hepatitis B virus (HBV) X protein, modulate viral replication, and enhance hepatocarcinogenesis. Inhibition of neddylation using the NEDD8-activating enzyme E1 inhibitor MLN4924 inhibits viral replication, including that of HBV. Understanding of the role of neddylation in viral infections is critical for developing new therapeutic targets and potential treatment strategies. In this review, we discuss recent progress in the understanding of the effects of neddylation during viral infection, particularly in HBV infection, and strategies for curing viral infection by targeting the neddylation pathway.


Assuntos
Neoplasias , Viroses , Humanos , Proteína NEDD8/metabolismo , Ubiquitinas/genética , Processamento de Proteína Pós-Traducional , Viroses/tratamento farmacológico
13.
Bioorg Med Chem ; 91: 117402, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421709

RESUMO

Nitric oxide (NO) may be beneficial to overcoming drug resistance resulting from mutation of mTOR kinases and bypass mechanisms. In this study, a novel structural series of hybrids of mTOR inhibitor and NO donor were designed and synthesized via structure-based drug design (SBDD). Throughout the 20 target compounds, half of the compounds (13a, 13b, 19a-19d, 19f-19j) demonstrated attractive mTOR inhibitory activity with IC50 at single-digit nanomolar level. In particular, 19f exerted superior anti-proliferative activity against HepG2, MCF-7, HL-60 cells (HepG2, IC50 = 0.24 µM; MCF-7, IC50 = 0.88 µM; HL-60, IC50 = 0.02 µM) to that of the clinical investigated mTOR inhibitor MLN0128, and show mild cytotoxicity against normal cells with IC50 over 10 µM. 19a, with the most potent mTOR inhibitory activity in this series (IC50 = 3.31 nM), also displayed attractive cellular potency. In addition, 19f treatment in HL-60 reduces the levels of Phos-Akt and Phos-S6 in a dose-dependent manner, and releases NO in cells. In summary, 19f deserves further development as a novel mTOR-based multi-target anti-cancer agent.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Doadores de Óxido Nítrico/farmacologia , Serina-Treonina Quinases TOR , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Desenho de Fármacos , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Estrutura Molecular
14.
Cell Mol Life Sci ; 79(4): 192, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35292885

RESUMO

The advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations. Using CFBE41o- cells expressing F508del-CFTR, we provide mechanistic evidence that targeting the E1 ubiquitin-activating enzyme (UBA1) by TAK-243, a small molecule in clinical trials for other diseases, boosts the rescue of F508del-CFTR induced by CFTR correctors. Moreover, TAK-243 significantly increases the F508del-CFTR short-circuit current induced by elexacaftor/tezacaftor/ivacaftor in differentiated human primary airway epithelial cells, a gold standard for the pre-clinical evaluation of patients' responsiveness to pharmacological treatments. This new combinatory approach also leads to an improvement in CFTR conductance on cells expressing other rare CF-causing mutations, including N1303K, for which Trikafta is not approved. These findings show that Trikafta therapy can be improved by the addition of a drug targeting the misfolding detection machinery at the beginning of the ubiquitination cascade and may pave the way for an extension of Trikafta to low/non-responding rare misfolded CFTR mutants.


Assuntos
Aminofenóis/administração & dosagem , Benzodioxóis/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Indóis/administração & dosagem , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Pirrolidinas/administração & dosagem , Quinolonas/administração & dosagem , Sulfetos/administração & dosagem , Sulfonamidas/administração & dosagem , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Deleção de Sequência
15.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834826

RESUMO

Liver fibrosis is a pathological process characterized by the excessive synthesis and accumulation of extracellular matrix proteins (ECMs) contributed mainly by the activated hepatic stellate cells (HSCs). Currently, no direct and effective anti-fibrotic agents have been approved for clinical use worldwide. Although the dysregulation of Eph receptor tyrosine kinase EphB2 has been reported to associate with the development of liver fibrosis, the involvement of other Eph family members in liver fibrosis remains underexplored. In this study, we found that the expression of EphB1 is significantly increased accompanying remarkable neddylation in activated HSCs. Mechanistically, this neddylation enhanced the kinase activity of EphB1 by the prevention of its degradation, thereby promoting the proliferation, migration, and activation of HSCs. Our findings revealed the involvement of EphB1 in the development of liver fibrosis through its neddylation, which provides new insights into the Eph receptor signaling and a potential target for the treatment of liver fibrosis.


Assuntos
Cirrose Hepática , Transdução de Sinais , Humanos , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Fosforilação , Receptor EphB1
16.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175719

RESUMO

Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. In this study, we obtained isoform expression profiles of maize after SCMV and MCMV single and synergistic infection (S + M) via comparative analysis of SMRT- and Illumina-based RNA sequencing. A total of 15,508, 7567, and 2378 differentially expressed isoforms (DEIs) were identified in S + M, MCMV, and SCMV libraries, which were primarily involved in photosynthesis, reactive oxygen species (ROS) scavenging, and some pathways related to disease resistance. The results of virus-induced gene silencing (VIGS) assays revealed that silencing of a vitamin C biosynthesis-related gene, ZmGalDH or ZmAPX1, promoted viral infections, while silencing ZmTAT or ZmNQO1, the gene involved in vitamin E or K biosynthesis, inhibited MCMV and S + M infections, likely by regulating the expressions of pathogenesis-related (PR) genes. Moreover, the relationship between viral infections and expression of the above four genes in ten maize inbred lines was determined. We further demonstrated that the exogenous application of vitamin C could effectively suppress viral infections, while vitamins E and K promoted MCMV infection. These findings provide novel insights into the gene regulatory networks of maize in response to MLN, and the roles of vitamins C, E, and K in conditioning viral infections in maize.


Assuntos
Ácido Ascórbico , Potyvirus , Transcriptoma , Potyvirus/fisiologia , Vitaminas , Zea mays/genética , Doenças das Plantas/genética
17.
J Cell Physiol ; 237(8): 3278-3291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578798

RESUMO

Protein neddylation inactivation is a novel topic in cancer research. However, there are few studies on the mechanism of neddylation underlying the development of sheep follicular granulosa cells (GCs). In this study, the development of follicular GCs in sheep was inactivated by MLN4924, a neddylation-specific inhibitor, which significantly attenuated the proliferation and cell index of sheep follicular GCs. Further, the inactivation of neddylation by MLN4924 caused the accumulation of the cullin ring ligase (CRLs) substrates Wee1 and c-Myc, which could upregulate NOXA protein expression. Meanwhile, the B-cell lymphoma/leukemia 2 (BCL2) family members Bcl-2 and MCL-1 were downregulated, subsequently inducing apoptosis in follicular GCs of sheep. Increasing Wee1 levels caused G2/M-phase arrest. The effects of neddylation inactivation on Akt, the JAK2/STAT3 signaling pathway, and Forkhead box class O(FOXO) family members were evaluated. Neddylation inactivation by MLN4924 increased the levels of phospho-Akt, JAK2, phospho-STAT3, and FOXO1 (p < 0.05) and decreased the levels of phospho-FOXO3a and STAT3 (p < 0.05). In addition, MLN4924 could alter the mitochondrial morphology of GCs, increase cellular glucose utilization and lactate production, increase reactive oxygen species (ROS) generation, and promote sheep follicular GCs glycolysis, thus causing changes in mitochondrial functions. Together, these findings point to an unrecognized role of neddylation in regulating follicular GCs proliferation in sheep.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Células da Granulosa , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ciclopentanos/farmacologia , Feminino , Células da Granulosa/citologia , Proteínas Proto-Oncogênicas c-akt , Ovinos
18.
BMC Plant Biol ; 22(1): 542, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418954

RESUMO

BACKGROUND: Maize lethal necrosis (MLN) disease is a significant constraint for maize producers in sub-Saharan Africa (SSA). The disease decimates the maize crop, in some cases, causing total crop failure with far-reaching impacts on regional food security. RESULTS: In this review, we analyze the impacts of MLN in Africa, finding that resource-poor farmers and consumers are the most vulnerable populations. We examine the molecular mechanism of MLN virus transmission, role of vectors and host plant resistance identifying a range of potential opportunities for genetic and phytosanitary interventions to control MLN. We discuss the likely exacerbating effects of climate change on the MLN menace and describe a sobering example of negative genetic association between tolerance to heat/drought and susceptibility to viral infection. We also review role of microRNAs in host plant response to MLN causing viruses as well as heat/drought stress that can be carefully engineered to develop resistant varieties using novel molecular techniques. CONCLUSIONS: With the dual drivers of increased crop loss due to MLN and increased demand of maize for food, the development and deployment of simple and safe technologies, like resistant cultivars developed through accelerated breeding or emerging gene editing technologies, will have substantial positive impact on livelihoods in the region. We have summarized the available genetic resources and identified a few large-effect QTLs that can be further exploited to accelerate conversion of existing farmer-preferred varieties into resistant cultivars.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/fisiologia , África Subsaariana , Necrose , Fatores Socioeconômicos
19.
Pharmacol Res ; 179: 106209, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398238

RESUMO

Targeted therapies using tyrosine kinase inhibitors (TKIs) against epidermal growth factor receptor (EGFR) have improved the outcomes of patients with non-small cell lung cancer (NSCLC). However, due to genetic mutations of EGFR or activation of other oncogenic pathways, cancer cells can develop resistance to TKIs, resulting in usually temporary and reversible therapeutic effects. Therefore, new anticancer agents are urgently needed to treat drug-resistant NSCLC. In this study, we found that acetyltanshinone IIA (ATA) displayed much stronger potency than erlotinib in inhibiting the growth of drug-resistant NSCLC cells and their-derived xenograft tumors. Our analyses revealed that ATA achieved this effect by the following mechanisms. First, ATA could bind p70S6K at its ATP-binding pocket to prevent phosphorylation, and second by increasing the ubiquitination of p70S6K to cause its degradation. Since phosphorylation of S6 ribosome protein (S6RP) by p70S6K can induce protein synthesis at the ribosome, the dramatic reduction of p70S6K after ATA treatment led to great reductions of new protein synthesis on several cell cycle-related proteins including cyclin D3, aurora kinase A, polo-like kinase, cyclin B1, survivin; and reduced the levels of EGFR and MET. In addition, ATA treatment increased the levels of p53 and p21 proteins, which blocked cell cycle progression in the G1/S phase. Taken together, as ATA can effectively block multiple signaling pathways essential for protein synthesis and cell proliferation, ATA can potentially be developed into a multi-target anti-cancer agent to treat TKI-resistant NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Mutação , Fenantrenos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases S6 Ribossômicas 70-kDa
20.
J Med Primatol ; 51(5): 270-277, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35841132

RESUMO

BACKGROUND: Identification of lymph nodes (LNs) draining a specific site or in obese macaques can be challenging. METHODS: Indocyanine Green (ICG) was administered intradermal (ID), intramuscular, in the oral mucosa, or subserosal in the colon followed by Near Infrared (NIR) imaging. RESULTS: After optimization to maximize LN identification, intradermal ICG was successful in identifying 50-100% of the axillary/inguinal LN at a site. Using NIR, collection of peripheral and mesenteric LNs in obese macaques was 100% successful after traditional methods failed. Additionally, guided collection of LNs draining the site of intraepithelial or intramuscular immunization demonstrated significantly increased numbers of T follicular helper (Tfh) cells in germinal centers of draining compared to nondraining LNs. CONCLUSION: These imaging techniques optimize our ability to evaluate immune changes within LNs over time, even in obese macaques. This approach allows for targeted serial biopsies that permit confidence that draining LNs are being harvested throughout the study.


Assuntos
Verde de Indocianina , Linfonodos , Animais , Linfonodos/diagnóstico por imagem , Macaca mulatta , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA