Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 31(5): 483-495, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28342136

RESUMO

Cytochrome P450 OleTJE has attracted much attention for its ability to catalyze the decarboxylation of long chain fatty acids to generate alkenes, which are not only biofuel molecule, but also can be used broadly for making lubricants, polymers and detergents. In this study, the molecular basis of the binding mechanism of P450 OleTJE for arachidic acid, myristic acid, and caprylic acid was investigated by utilizing conventional molecular dynamics simulation and binding free energy calculations. Moreover, random acceleration molecular dynamics (RAMD) simulations were performed to uncover the most probable access/egress channels for different fatty acids. The predicted binding free energy shows an order of arachidic acid < myristic acid < caprylic acid. Key residues interacting with three substrates and residues specifically binding to one of them were identified. The RAMD results suggest the most likely channel for arachidic acid, myristic acid, and caprylic acid are 2e/2b, 2a and 2f/2a, respectively. It is suggested that the reaction is easier to carry out in myristic acid bound system than those in arachidic acid and caprylic acid bound system based on the distance of Hß atom of substrate relative to P450 OleTJE Compound I states. This study provided novel insight to understand the substrate preference mechanism of P450 OleTJE and valuable information for rational enzyme design for short chain fatty acid decarboxylation.


Assuntos
Caprilatos/química , Sistema Enzimático do Citocromo P-450/química , Ácidos Eicosanoicos/química , Ácido Mirístico/química , Catálise , Cinética , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Especificidade por Substrato , Termodinâmica
2.
Med Chem ; 17(4): 418-428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33019937

RESUMO

BACKGROUND: The tradition of khat chewing has been deep-rooted in the African and Arabian Peninsula for centuries. Due to its amphetamine-like psycho-stimulant or euphoric effect, khat has been used by millions in Somalia, Ethiopia, Saudi Arabia and Yemen. The long-term use of khat can induce many major health outcomes, which may be serious and irreversible. OBJECTIVE: Prolonged use of khat constituents has been associated with different types of cancers such as prostatic, breast and ovarian cancer. However, it has been very difficult to identify the molecular targets involved in khat carcinogenesis that interact with the Khat constituents by in vitro/in vivo experimental tools. METHODS: In silico tools were used to predict potential targets involved in the carcinogenesis of khat. Pass on-line prediction server was used for the prediction of a potential molecular target for khat constituents. Molecular Dynamics simulation and MM-GBSA calculation of the predicted target were carried out. RESULTS: Molecular Dynamics simulation and MM-GBSA calculation revealed that among khat constituents, ß-sitosterol showed a high binding affinity towards 17ß-HSD5. On the other hand, this study highlights for the first time some new interactions, which were observed in the case of cathine, cathinone and nerol during the simulation. CONCLUSION: In silico molecular dynamic simulation tools were used for the first time to investigate the molecular mechanism of widely used leaves of psychoactive khat (Catha edulis) constituent. The present study provides deep insight to understand the effect of khat constituents involved in the impairment of the reproductive system and its binding to 17ß-HSD5. ADMET profiling also suggested that few khat constituents do not fulfill the requirements of the Lipinski rule of five i.e. poor absorption and blood-brain barrier impermeability.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Carcinógenos/metabolismo , Catha/química , Membro C3 da Família 1 de alfa-Ceto Redutase/química , Carcinógenos/química , Carcinógenos/farmacocinética , Domínio Catalítico , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Folhas de Planta/química , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA