Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Cell ; 185(7): 1208-1222.e21, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35305314

RESUMO

The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.


Assuntos
Anticorpos Antineoplásicos , Neoplasias Ovarianas , Anticorpos Monoclonais , Autoanticorpos , Autoantígenos , Feminino , Humanos , Neoplasias Ovarianas/genética , Microambiente Tumoral
2.
Cell ; 170(2): 340-351.e12, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28709001

RESUMO

Injured skeletal muscle regenerates, but with age or in muscular dystrophies, muscle is replaced by fat. Upon injury, muscle-resident fibro/adipogenic progenitors (FAPs) proliferated and gave rise to adipocytes. These FAPs dynamically produced primary cilia, structures that transduce intercellular cues such as Hedgehog (Hh) signals. Genetically removing cilia from FAPs inhibited intramuscular adipogenesis, both after injury and in a mouse model of Duchenne muscular dystrophy. Blocking FAP ciliation also enhanced myofiber regeneration after injury and reduced myofiber size decline in the muscular dystrophy model. Hh signaling through FAP cilia regulated the expression of TIMP3, a secreted metalloproteinase inhibitor, that inhibited MMP14 to block adipogenesis. A pharmacological mimetic of TIMP3 blocked the conversion of FAPs into adipocytes, pointing to a strategy to combat fatty degeneration of skeletal muscle. We conclude that ciliary Hh signaling by FAPs orchestrates the regenerative response to skeletal muscle injury.


Assuntos
Adipogenia , Proteínas Hedgehog/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Adipócitos/metabolismo , Animais , Cílios/metabolismo , Distrofina/genética , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Desenvolvimento Muscular , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Regeneração , Inibidor Tecidual de Metaloproteinase-3/metabolismo
3.
BMC Cancer ; 24(1): 746, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898429

RESUMO

BACKGROUND: Basement membrane (BM) is an important component of the extracellular matrix, which plays an important role in the growth and metastasis of tumor cells. However, few biomarkers based on BM have been developed for prognostic assessment and prediction of immunotherapy in bladder cancer (BLCA). METHODS: In this study, we used the BLCA public database to explore the relationship between BM-related genes (BMRGs) and prognosis. A novel molecular typing of BLCA was performed using consensus clustering. LASSO regression was used to construct a signature based on BMRGs, and its relationship with prognosis was explored using survival analysis. The pivotal BMRGs were further analyzed to assess its clinical characteristics and immune landscape. Finally, immunohistochemistry was used to detect the expression of the hub gene in BLCA patients who underwent surgery or received immune checkpoint inhibitor (ICI) immunotherapy in our hospital. RESULTS: We comprehensively analyzed the relationship between BMRGs and BLCA, and established a prognostic-related signature which was an independent influence on the prognostic prediction of BLCA. We further screened and validated the pivotal gene-MMP14 in public database. In addition, we found that MMP14 expression in muscle invasive bladder cancer (MIBC) was significantly higher and high MMP14 expression had a poorer response to ICI treatment in our cohort. CONCLUSIONS: Our findings highlighted the satisfactory value of BMRGs and suggested that MMP14 may be a potential biomarker in predicting prognosis and response to immunotherapy in BLCA.


Assuntos
Membrana Basal , Biomarcadores Tumorais , Imunoterapia , Metaloproteinase 14 da Matriz , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/mortalidade , Prognóstico , Imunoterapia/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Masculino , Membrana Basal/metabolismo , Feminino , Idoso , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Regulação Neoplásica da Expressão Gênica
4.
Pharmacol Res ; 200: 107070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218353

RESUMO

Fibrotic hypersensitivity pneumonitis (FHP) is a fatal interstitial pulmonary disease with limited treatment options. Lung macrophages are a heterogeneous cell population that exhibit distinct subsets with divergent functions, playing pivotal roles in the progression of pulmonary fibrosis. However, the specific macrophage subpopulations and underlying mechanisms involved in the disease remain largely unexplored. In this study, a decision tree model showed that matrix metalloproteinase-14 (MMP14) had higher scores for important features in the up-regulated genes in macrophages from mice exposed to the Saccharopolyspora rectivirgula antigen (SR-Ag). Using single-cell RNA sequencing (scRNA-seq) analysis of hypersensitivity pneumonitis (HP) mice profiles, we identified MMP14high macrophage subcluster with a predominant M2 phenotype that exhibited higher activity in promoting fibroblast-to myofibroblast transition (FMT). We demonstrated that suppressing toll-like receptor 2 (TLR2) and nuclear factor kappa-B (NF-κB) could attenuate MMP14 expression and exosome secretion in macrophages stimulation with SR-Ag. The exosomes derived from MMP14-overexpressing macrophages were found to be more effective in regulating the transition of fibroblasts through exosomal MMP14. Importantly, it was observed that the transfer of MMP14-overexpressing macrophages into mice promoted lung inflammation and fibrosis induced by SR-Ag. NSC-405020 binding to the hemopexin domain (PEX) of MMP-14 ameliorated lung inflammation and fibrosis induced by SR-Ag in mice. Thus, MMP14-overexpressing macrophages may be an important mechanism contributing to the exacerbation of allergic reactions. Our results indicated that MMP14 in macrophages has the potential to be a therapeutic target for HP.


Assuntos
Alveolite Alérgica Extrínseca , Pneumonia , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Alveolite Alérgica Extrínseca/metabolismo , Alveolite Alérgica Extrínseca/patologia , Macrófagos/metabolismo , Pneumonia/metabolismo , Camundongos Endogâmicos C57BL
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731942

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Assuntos
Células Acinares , Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Espécies Reativas de Oxigênio , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Metaplasia/metabolismo , Metaplasia/genética , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos Transgênicos , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Proteínas Inflamatórias de Macrófagos/metabolismo , Proteínas Inflamatórias de Macrófagos/genética , Pâncreas/metabolismo , Pâncreas/patologia
6.
Am J Physiol Cell Physiol ; 324(2): C353-C365, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36534501

RESUMO

Small leucine-rich proteoglycans (SLRPs) are major regulators of extracellular matrix assembly and cell signaling. Lumican, a member of the SLRPs family, and its derived peptides were shown to possess antitumor activity by interacting directly with the catalytic domain of MMP-14 leading to the inhibition of its activity. The aim of the present report was to characterize by in silico three-dimensional (3D) modeling the structure and the dynamics of four SLRPs including their core protein and their specific polysaccharide chains to assess their capacity to bind to MMP-14 and to regulate its activity. Molecular docking experiments were performed to identify the specific amino acids of MMP-14 interacting with each of the four SLRPs. The inhibition of each SLRP (100 nM) on MMP-14 activity was measured and the constants of inhibition (Ki) were evaluated. The impact of the number of glycan chains, structures, and dynamics of lumican on the interaction with MMP-14 was assessed by molecular dynamics simulations. Molecular docking analysis showed that all SLRPs bind to MMP-14 through their concave face, but in different regions of the catalytic domain of MMP-14. Each SLRPs inhibited significantly the MMP-14 activity. Finally, molecular dynamics showed the role of glycan chains in interaction with MMP-14 and shielding effect of SLRPs. Altogether, the results demonstrated that each SLRP exhibited inhibition of MMP-14 activity. However, the differential targeting of MMP-14 by the SLRPs was shown to be related not only to the core protein conformation but also to the glycan chain structures and dynamics.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Proteínas da Matriz Extracelular , Biglicano , Lumicana , Decorina , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Fibromodulina , Proteínas da Matriz Extracelular/metabolismo , Metaloproteinase 14 da Matriz , Simulação de Acoplamento Molecular
7.
Biochem Biophys Res Commun ; 684: 149137, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37897911

RESUMO

Abnormal vascularization plays a crucial role in cell proliferation, tumor invasion and metastasis of hepatocellular carcinoma (HCC). It has been reported that ETV4 functions as an oncogenic gene in driving the carcinogenesis and progression, and promoting invasion and metastasis of HCC. However, the function of ETV4 on angiogenesis in HCC remains unclear. In the current study, immunohistochemistry showed that knockdown of ETV4 reduced angiogenesis in HCC xenograft tumor tissues. In vitro, tube formation assay verified that ETV4 expression promoted angiogenesis through simulating the angiogenic environment in HCC cells. Transcriptome sequencing indicated that MMP14 was one of the differentially expressed genes enriched in angiogenesis process. Subsequently, it was confirmed that MMP14 was regulated by ETV4 at the transcription level in HCC cells, clinical tissue samples and online databases. Further, we demonstrated that MMP14 induced angiogenesis in ETV4-mediated HCC microenvironment. Collectively, this research further reveals the biological mechanism of ETV4 in promoting the migration and invasion of HCC, and provides novel mechanistic insights and strategic guidance for anti-angiogenic therapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Metaloproteinase 14 da Matriz/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo
8.
Development ; 147(7)2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-32280063

RESUMO

Matrix metalloproteinases have a broad spectrum of substrates ranging from extracellular matrix components and adhesion molecules to chemokines and growth factors. Despite being mostly secreted, MMPs have been detected in the cytosol, the mitochondria or the nucleus. Although most of the attention is focused on their role in matrix remodeling, the diversity of their substrates and their complex trafficking open the possibility for non-canonical functions. Yet in vivo examples and experimental demonstration of the physiological relevance of such activities are rare. Here, we have used chick neural crest (NC) cells, a highly migratory stem cell population likened to invasive cancer cells, as a model for physiological epithelial-mesenchymal transition (EMT). We demonstrate that MMP14 is required for NC delamination. Interestingly, this role is independent of its cytoplasmic tail and of its catalytic activity. Our in vivo data indicate that, in addition to being a late pro-invasive factor, MMP14 is also likely to be an early player, owing to its role in EMT.


Assuntos
Matriz Extracelular/metabolismo , Lamina Tipo A/metabolismo , Metaloproteinase 14 da Matriz/fisiologia , Crista Neural/metabolismo , Animais , Animais Geneticamente Modificados , Caderinas/metabolismo , Catálise , Células Cultivadas , Embrião de Galinha , Transição Epitelial-Mesenquimal/fisiologia
9.
Cell Biol Toxicol ; 39(4): 1257-1274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36112264

RESUMO

Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) are emerged as carriers of therapeutic targets against bone disorders, yet its isolation and purification are limited with recent techniques. Magnetic nanoparticles (MNPs) can load EVs with a unique targeted drug delivery system. We constructed gold-coated magnetic nanoparticles (GMNPs) by decorating the surface of the Fe3O4@SiO2 core and a silica shell with poly(ethylene glycol) (PEG)-aldehyde (CHO) and examined the role of BMSC-EVs loaded on GMNPs in diabetic osteoporosis (DO). The osteoporosis-related differentially expressed miR-150-5p was singled out by microarray analysis. DO models were then established in Sprague-Dawley rats by streptozotocin injection, where poor expression of miR-150-5p was validated in the bone tissues. Next, GMNPE was prepared by combining GMNPs with anti-CD63, after which osteoblasts were co-cultured with the GMNPE-BMSC-EVs. The re-expression of miR-150-5p facilitated osteogenesis in osteoblasts. GMNPE could promote the enrichment of EVs in the bone tissues of DO rats. BMSC-EVs delivered miR-150-5p to osteoblasts, where miR-150-5p targeted MMP14 and consequently activated Wnt/ß-catenin pathway. This effect contributed to the enhancement of osteoblast proliferation and maturation. Furthermore, GMNPE enhanced the EV-based delivery of miR-150-5p to regulate the MMP14/Wnt/ß-catenin axis, resulting in promotion of osteogenesis. Overall, our findings suggest the potential of GMNP-BMSC-EVs to strengthen osteoblast proliferation and maturation in DO, showing promise as an appealing drug delivery strategy against DO. 1. GMNPs-BMSCs-EVs-miR-150-5p promotes the osteogenesis of DO rats. 2. miR-150-5p induces osteoblast proliferation and maturation by targeting MMP14. 3. Inhibition of MMP14 activates Wnt/ß-catenin and increases osteogenesis. 4. miR-150-5p activates the Wnt/ß-catenin pathway by downregulating MMP14.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Nanopartículas de Magnetita , Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Ratos , Animais , MicroRNAs/metabolismo , beta Catenina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Diferenciação Celular/fisiologia , Dióxido de Silício , Ratos Sprague-Dawley , Osteoporose/terapia , Osteoporose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus/metabolismo
10.
Bioorg Med Chem ; 85: 117289, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094433

RESUMO

Matrix metalloproteinases (MMPs) are involved in various cellular events in physiology and pathophysiology through endopeptidases activity. The expression levels and activities of most MMPs remain minimal in the normal conditions, whereas some MMPs are significantly activated in pathological conditions such as cancer and neovascularization. Hence, MMPs are considered as both diagnostic markers and potential targets for therapeutic agents. Twenty-three known human MMPs share a similar active site structure with a zinc-binding motif, resulting in lack of specificity. Therefore, the enhancement of target specificity is a primary goal for the development of specific MMP inhibitors. MMP-14 regulates VEGFA/VEGFR2-system through cleavage of the non-functional VEGFR1 in vascular angiogenesis. In this study, we developed a fluorescence-based enzymatic assay using a specific MMP-14 substrate generated from VEGFR1 cleavage site. This well optimized assay was used as a primary screen method to identify MMP-14 specific inhibitors from 1,200 Prestwick FDA-approved drug library. Of ten initial hits, two compounds showed IC50 values below 30 µM, which were further validated by direct binding analysis using surface plasmon resonance (SPR). Clioquinol and chloroxine, both of which contain a quinoline structure, were identified as MMP-14 inhibitors. Five analogs were tested, four of which were found to be completely devoid of inhibitory activity. Clioquinol exhibited selectivity towards MMP-14, as it showed no inhibitory activity towards four other MMPs.


Assuntos
Clioquinol , Ensaios de Triagem em Larga Escala , Humanos , Metaloproteinase 14 da Matriz , Inibidores de Metaloproteinases de Matriz/química , Metaloproteinases da Matriz/metabolismo
11.
J Cell Mol Med ; 26(2): 475-490, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890108

RESUMO

At present, growing evidence indicates that long non-coding RNAs (lncRNAs) participate in the progression of glioma. The function of LOXL1-AS1 in vasculogenic mimicry (VM) in glioma remains unclear. First, the expressions of TIAR, the lncRNA LOXL1-AS1, miR-374b-5p and MMP14 were examined by qRT-PCR and Western blot in both, glioma tissues and glioma cell lines. Proliferation, migration, invasion and tube formation assays were conducted to evaluate the roles of TIAR, LOXL1-AS1, miR-374b-5p and MMP14 in malignant cellular behaviours in glioma cells. A nude mouse xenograft model and dual staining for CD34 and PAS were used to assess whether VM was affected by TIAR, LOXL1-AS1 or miR-374b-5p in vivo. In this study, low levels of TIAR and high levels of LOXL1-AS1 were found in glioma cells and tissues. TIAR downregulated the expression of LOXL1-AS1 by destabilizing it. LOXL1-AS1 acted like a miRNA sponge towards miR-374b-5p so that downregulation of the former greatly inhibited cell proliferation, migration, invasion and VM. Additionally, miR-374b-5p overexpression repressed malignant biological behaviours and VM in glioma by modifying MMP14. In summary, we demonstrated that TIAR combined with LOXL1-AS1 modulates VM in glioma via the miR-374b-5p/MMP14 axis, revealing novel targets for glioma therapy.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Aminoácido Oxirredutases/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo
12.
Cell Tissue Res ; 389(3): 517-530, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35786766

RESUMO

Venous malformations (VMs), featuring localized dilated veins, are the most common developmental vascular anomalies. Aberrantly organized perivascular extracellular matrix (ECM) is one of the prominent pathological hallmarks of VMs, accounting for vascular dysfunction. Although previous studies have revealed various proteins involved in ECM remodeling, the detailed pattern and molecular mechanisms underlying the endothelium-ECM interplay have not been fully elucidated. Our previous studies revealed drastically elevated extracellular vesicle (EV) secretion in VM lesions. Here, we identified increased EV-carried MMP14 in lesion fluids of VMs and culture medium of TIE2-L914F mutant endothelial cells (ECs), along with stronger ECM degradation. Knockdown of RAB27A, a required regulator for vesicle docking and fusion, led to decreased secretion of EV-carried MMP14 in vitro. Histochemical analysis further demonstrated a highly positive correlation between RAB27A in the endothelium and MMP14 in the perivascular environment. Therefore, our results proved that RAB27A-regulated secretion of EV-MMP14, as a new pattern of endothelium-ECM interplay, contributed to the development of VMs by promoting ECM degradation.


Assuntos
Vesículas Extracelulares , Metaloproteinase 14 da Matriz/metabolismo , Malformações Vasculares , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia
13.
Cancer Cell Int ; 22(1): 422, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585738

RESUMO

BACKGROUND: The endogenous tissue inhibitor of metalloproteinase-2 (TIMP-2), through its homeostatic action on certain metalloproteinases, plays a vital role in remodelling extracellular matrix (ECM) to facilitate cancer progression. This study investigated the role of TIMP-2 in an ovarian cancer cell line in which the expression of TIMP-2 was reduced by either siRNA or CRISPR/Cas9. METHODS: OVCAR5 cells were transiently and stably transfected with either single or pooled TIMP-2 siRNAs (T2-KD cells) or by CRISPR/Cas9 under the influence of two distinct guide RNAs (gRNA1 and gRNA2 cell lines). The expression of different genes was analysed at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence (IF) and western blot. Proliferation of cells was investigated by 5-Ethynyl-2'-deoxyuridine (EdU) assay or staining with Ki67. Cell migration/invasion was determined by xCELLigence. Cell growth in vitro was determined by 3D spheroid cultures and in vivo by a mouse xenograft model. RESULTS: Approximately 70-90% knock down of TIMP-2 expression were confirmed in T2-KD, gRNA1 and gRNA2 OVCAR5 ovarian cancer cells at the protein level. T2-KD, gRNA1 and gRNA2 cells exhibited a significant downregulation of MMP-2 expression, but concurrently a significant upregulation in the expression of membrane bound MMP-14 compared to control and parental cells. Enhanced proliferation and invasion were exhibited in all TIMP-2 knocked down cells but differences in sensitivity to paclitaxel (PTX) treatment were observed, with T2-KD cells and gRNA2 cell line being sensitive, while the gRNA1 cell line was resistant to PTX treatment. In addition, significant differences in the growth of gRNA1 and gRNA2 cell lines were observed in in vitro 3D cultures as well as in an in vivo mouse xenograft model. CONCLUSIONS: Our results suggest that the inhibition of TIMP-2 by siRNA and CRISPR/Cas-9 modulate the expression of MMP-2 and MMP-14 and reprogram ovarian cancer cells to facilitate proliferation and invasion. Distinct disparities in in vitro chemosensitivity and growth in 3D culture, and differences in tumour burden and invasion to proximal organs in a mouse model imply that selective suppression of TIMP-2 expression by siRNA or CRISPR/Cas-9 alters important aspects of metastasis and chemosensitivity in ovarian cancer.

14.
Pediatr Blood Cancer ; 69(12): e29959, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36106829

RESUMO

BACKGROUND: Ewing sarcoma (ES) is the second most common primary bone malignancy, with an urgent need for new treatments. ES is associated with high rates of progression and relapse, driven by drug-resistant cells capable of migration, self-renewal and single-cell tumorigenesis, termed cancer stem-like cells (CSCs). Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-bound proteolytic enzyme, which, via direct and indirect mechanisms, digests four of the main types of collagen. This can be hijacked in malignancy for invasion and metastasis, with high expression predicting decreased survival in multiple cancers. In this study, we have examined the hypothesis that MT1-MMP is expressed by ES cells and explored the relationship between expression and outcomes. PROCEDURE: MT1-MMP expression in ES established cell lines, primary patient-derived cultures and daughter ES-CSCs was characterised by RNA sequencing, Western blotting, immunocytochemistry and flow cytometry. Immunohistochemistry was used to detect MT1-MMP in tumour biopsies, and the relationship between expression, event-free and overall survival examined. RESULTS: MT1-MMP was detected at both RNA and protein levels in five of six established cell lines, all primary cultures (n = 25) and all daughter ES-CSCs (n = 7). Immunohistochemistry of treatment-naïve biopsy tissue demonstrated that high MT1-MMP expression predicted decreased event-free and overall survival (p = .017 and .036, respectively; n = 47); this was not significant in multivariate analysis. CONCLUSIONS: MT1-MMP is expressed by ES cells, including ES-CSCs, making it a candidate therapeutic target. The level of MT1-MMP expression at diagnosis may be considered as a prognostic biomarker if validated by retrospective analysis of a larger cohort of clinical trial samples.


Assuntos
Tumores Neuroectodérmicos Primitivos Periféricos , Sarcoma de Ewing , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Estudos Retrospectivos , Recidiva Local de Neoplasia , Imuno-Histoquímica
15.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430713

RESUMO

The increasing industrial use of vanadium (V), as well as its recent medical use in various pathologies has intensified its environmental release, making it an emerging pollutant. The sea urchin embryo has long been used to study the effects induced by metals, including V. In this study we used an integrated approach that correlates the biological effects on embryo development with proteolytic activities of gelatinases that could better reflect any metal-induced imbalances. V-exposure caused morphological/morphometric aberrations, mainly concerning the correct distribution of embryonic cells, the development of the skeleton, and the embryo volume. Moreover, V induced a concentration change in all the gelatinases expressed during embryo development and a reduction in their total proteolytic activity. The presence of three MMP-like gelatinases (MMP-2, -9, and -14) was also demonstrated and their levels depended on V-concentration. In particular, the MMP-14-like protein modified its expression level during embryo development in a time- and dose-dependent manner. This enzyme also showed a specific localization on filopodia, suggesting that primary mesenchyme cells (PMCs) could be responsible for its synthesis. In conclusion, these results indicate that an integrated study among morphology/morphometry, proteolytic activity, and MMP-14 expression constitutes an important response profile to V-action.


Assuntos
Paracentrotus , Animais , Vanádio/farmacologia , Vanádio/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Desenvolvimento Embrionário , Gelatinases/metabolismo
16.
J Cell Mol Med ; 25(18): 8850-8862, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34414666

RESUMO

Airway epithelial cells (AECs) participate in allergic airway inflammation by producing mediators in response to allergen stimulation. Whether ovalbumin (OVA) challenge promotes exosome release from AECs (OVA-challenged AEC-derived exosomes (OAEs)), thereby affecting airway inflammation, as well as the underlying mechanisms, is unknown. Our study showed that AECs released an increased number of exosomes after OVA challenge, and the expression of Plexin B2 (PLXNB2; a natural CD100 ligand) was increased by a massive 85.7-fold in OAEs than in PBS-treated AEC-derived exosomes (PAEs). CD100+ F4/80+ macrophages engulfed OAEs to trigger the transcription of pro-inflammatory chemokines and cytokines. Plxnb2 transcripts increased in asthmatic lungs, and similarly, PLXNB2 protein was highly enriched in exosomes purified from asthmatic bronchoalveolar lavage (BAL) fluid. Furthermore, aspiration of PLXNB2 or OAEs increased the recruitment of lung neutrophils, monocytes, eosinophils and dendritic cells in OVA-challenged mice. Mechanistically, OAE aspiration enhanced the cleavage of CD100 by MMP14, which manifested as an increase in the soluble CD100 (sCD100) level in BAL fluid and lung homogenates. Knockdown of Mmp14 in macrophages prevented the cleavage of CD100 and reduced Ccl2, Ccl5 and Cxcl2 transcription. These data indicate that PLXNB2-containing OAEs aggravate airway asthmatic inflammation via cleavage of CD100 by MMP14, suggesting potential therapeutic targets of OAE-mediated asthma exacerbations.


Assuntos
Antígenos CD/imunologia , Asma/imunologia , Exossomos/imunologia , Inflamação/imunologia , Semaforinas/imunologia , Remodelação das Vias Aéreas , Animais , Linhagem Celular , Células Epiteliais , Feminino , Humanos , Metaloproteinase 14 da Matriz/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia
17.
J Cell Mol Med ; 25(7): 3654-3664, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33683827

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an invasive and aggressive cancer that remains a major threat to human health across the globe. Despite advances in cancer treatments and diagnosis, the prognosis of PDAC patients remains poor. New and more effective PDAC therapies are therefore urgently required. In this study, we identified a novel host factor, namely the LncRNA TP73-AS1, as overexpressed in PDAC tissues compared to adjacent healthy tissue samples. The overexpression of TP-73-AS1 was found to correlate with both PDAC stage and lymph node metastasis. To reveal its role in PDCA, we targeted TP73-AS1 using LnRNA inhibitors in a range of pancreatic cancer (PC) cell lines. We found that the inhibition of TP73-AS1 led to a loss of MMP14 expression in PC cells and significantly inhibited their migratory and invasive capacity. No effects of TP73-AS1 on cell survival or proliferation were observed. Mechanistically, we found that TP73-AS1 suppressed the expression of the known oncogenic miR-200a. Taken together, these data highlight the prognostic potential of TP73-AS1 for PC patients and highlight it as a potential anti-PDAC therapeutic target.


Assuntos
Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 14 da Matriz/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/fisiologia , Animais , Apoptose , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Metástase Linfática/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico
18.
J Cell Sci ; 132(11)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31076513

RESUMO

Cancer cells degrade the extracellular matrix through actin-rich protrusions termed invadopodia. The formation of functional invadopodia requires polarized membrane trafficking driven by Rho GTPase-mediated cytoskeletal remodeling. We identify the Rho GTPase-activating protein deleted in liver cancer 3 (DLC3; also known as STARD8) as an integral component of the endosomal transport and sorting machinery. We provide evidence for the direct regulation of RhoB by DLC3 at endosomal membranes to which DLC3 is recruited by interacting with the sorting nexin SNX27. In TGF-ß-treated MCF10A breast epithelial cells, DLC3 knockdown enhanced metalloproteinase-dependent matrix degradation, which was partially rescued by RhoB co-depletion. This was recapitulated in MDA-MB-231 breast cancer cells in which early endosomes demonstrated aberrantly enriched F-actin and accumulated the metalloproteinase MT1-MMP (also known as MMP14) upon DLC3 knockdown. Remarkably, Rab4 (herein referring to Rab4A) downregulation fully rescued the enhanced matrix degradation of TGF-ß-treated MCF10A and MDA-MB-231 cells. In summary, our findings establish a novel role for DLC3 in the suppression of MT1-MMP-dependent matrix degradation by inactivating RhoB signaling at endosomal membranes. We propose that DLC3 function is required to limit endosomal actin polymerization, Rab4-dependent recycling of MT1-MMP and, consequently, matrix degradation mediated by invadopodial activity.


Assuntos
Endossomos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Actinas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Matriz Extracelular/metabolismo , Feminino , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Células HeLa , Humanos , Podossomos/fisiologia , Nexinas de Classificação/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Proteínas rab4 de Ligação ao GTP/metabolismo
19.
J Neurosci Res ; 99(4): 1048-1063, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33404121

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is released by glioma cells and promotes tumor growth. We have previously found that GDNF released from the tumor cells is a chemoattractant for microglial cells, the immune cells of the central nervous system. Here we show that GDNF increases matrix metalloproteinase (MMP) 9 and MMP14 expression in cultured microglial cells from mixed sexes of neonatal mice. The GDNF-induced microglial MMP9 and MMP14 upregulation is mediated by GDNF family receptor alpha 1 receptors and dependent on p38 mitogen-activated protein kinase signaling. In organotypic brain slices, GDNF promotes the growth of glioma and this effect depends on the presence of microglia. We also previously found that MMP9 and MMP14 upregulation can be mediated by Toll-like receptor (TLR) 2 signaling and here we demonstrate that GDNF increases the expression of TLR1 and TLR2. In conclusion, GDNF promotes the pro-tumorigenic phenotype of microglia.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Glioma/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Animais , Linhagem Celular Tumoral , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Imidazóis/farmacologia , Masculino , Metanálise como Assunto , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Cultura Primária de Células , Piridinas/farmacologia , Transdução de Sinais , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Mar Drugs ; 19(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677445

RESUMO

Sugar-based molecules such as heparins or natural heparan sulfate polysaccharides have been developed and widely studied for controlling heparanase (HPSE) enzymatic activity, a key player in extracellular matrix remodelling during cancer pathogenesis. However, non-enzymatic functions of HPSE have also been described in tumour mechanisms. Given their versatile properties, we hypothesized that sugar-based inhibitors may interfere with enzymatic but also non-enzymatic HPSE activities. In this work, we assessed the effects of an original marine λ-carrageenan derived oligosaccharide (λ-CO) we previously described, along with those of its native counterpart and heparins, on cell viability, proliferation, migration, and invasion of MDA-MB-231 breast cancer cells but also of sh-MDA-MB-231 cells, in which the expression of HPSE was selectively downregulated. We observed no cytotoxic and no anti-proliferative effects of our compounds but surprisingly λ-CO was the most efficient to reduce cell migration and invasion compared with heparins, and in a HPSE-dependent manner. We provided evidence that λ-CO tightly controlled a HPSE/MMP-14/MMP-2 axis, leading to reduced MMP-2 activity. Altogether, this study highlights λ-CO as a potent HPSE "modulator" capable of reducing not only the enzymatic activity of HPSE but also the functions controlled by the HPSE levels.


Assuntos
Antineoplásicos/farmacologia , Carragenina/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Glucuronidase/metabolismo , Rodófitas , Animais , Antineoplásicos/química , Organismos Aquáticos , Neoplasias da Mama , Carragenina/química , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA