Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.220
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 172(1-2): 191-204.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29224778

RESUMO

Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROß, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft.


Assuntos
Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Adulto , Animais , Benzilaminas , Quimiocina CXCL2/farmacologia , Ciclamos , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos ICR , Polimorfismo Genético
2.
J Cell Mol Med ; 28(7): e18171, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506084

RESUMO

SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
3.
Cancer Sci ; 115(5): 1459-1475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433526

RESUMO

Antiangiogenic therapy targeting VEGF-A has become the standard of first-line therapy for non-small cell lung cancer (NSCLC). However, its clinical response rate is still less than 50%, and most patients eventually develop resistance, even when using combination therapy with chemotherapy. The major cause of resistance is the activation of complex bypass signals that induce angiogenesis and tumor progression. Therefore, exploring novel proangiogenic mechanisms and developing promising targets for combination therapy are crucial for improving the efficacy of antiangiogenic therapy. Immunoglobulin-like transcript (ILT) 4 is a classic immunosuppressive molecule that inhibits myeloid cell activation. Recent studies have shown that tumor cell-derived ILT4 drives tumor progression via the induction of malignant biologies and creation of an immunosuppressive microenvironment. However, whether and how ILT4 participates in NSCLC angiogenesis remain elusive. Herein, we found that enriched ILT4 in NSCLC is positively correlated with high microvessel density, advanced disease, and poor overall survival. Tumor cell-derived ILT4 induced angiogenesis both in vitro and in vivo and tumor progression and metastasis in vivo. Mechanistically, ILT4 was upregulated by its ligand angiopoietin-like protein 2 (ANGPTL2). Their interaction subsequently activated the ERK1/2 signaling pathway to increase the secretion of the proangiogenic factors VEGF-A and MMP-9, which are responsible for NSCLC angiogenesis. Our study explored a novel mechanism for ILT4-induced tumor progression and provided a potential target for antiangiogenic therapy in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neovascularização Patológica , Receptores Imunológicos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Animais , Camundongos , Linhagem Celular Tumoral , Receptores Imunológicos/metabolismo , Feminino , Masculino , Glicoproteínas de Membrana/metabolismo , Sistema de Sinalização das MAP Quinases , Metaloproteinase 9 da Matriz/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Microambiente Tumoral , Angiogênese
4.
Neuropathol Appl Neurobiol ; 50(3): e12982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38742276

RESUMO

AIMS: Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS: This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS: We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS: Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Metaloproteinase 9 da Matriz , Microglia , Fagocitose , Superóxido Dismutase-1 , Animais , Camundongos , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Fagocitose/fisiologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
5.
J Vasc Res ; 61(2): 77-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38503274

RESUMO

INTRODUCTION: Previous studies have confirmed that low shear stress (LSS) induces glycocalyx disruption, leading to endothelial dysfunction. However, the role of autophagy in LSS-induced glycocalyx disruption and relevant mechanism are not clear. In this study, we hypothesized that LSS may promote autophagy, disrupting the endothelium glycocalyx. METHODS: Human umbilical vein endothelial cells were subjected to physiological shear stress and LSS treatments, followed by the application of autophagy inducers and inhibitors. Additionally, cells were treated with specific matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) inhibitor. The expression of autophagic markers, glycocalyx, MMP-2, and MMP-9 was measured. RESULTS: LSS impacted the expression of endothelium autophagy markers, increasing the expression of LC3II.LC3I-1 and Beclin-1, and decreasing the levels of p62, accompanied by glycocalyx disturbance. Moreover, LSS upregulated the expression of MMP-2 and MMP-9 and downregulated the levels of syndecan-1 and heparan sulfate (HS). Additionally, expression of MMP-2 and MMP-9 was increased by an autophagy promoter but was decreased by autophagy inhibitor treatment under LSS. Autophagy and MMP-2 and MMP-9 further caused glycocalyx disruption. CONCLUSION: LSS promotes autophagy, leading to glycocalyx disruption. Autophagy increases the expression of MMP-2 and MMP-9, which are correlated with the glycocalyx destruction induced by LSS.


Assuntos
Glicocálix , Metaloproteinase 2 da Matriz , Humanos , Glicocálix/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Autofagia , Estresse Mecânico
6.
Hematol Oncol ; 42(1): e3244, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287534

RESUMO

Mycosis fungoides (MF) progresses slowly before advancing to skin tumors followed by lymph node and visceral involvement. Among MF progression, stage IIB is an initial time point of tumor formation in MF. Since MF in tumor stage possess abundant blood vessels, it is important to evaluate the pro-angiogenic factors before and after MF in stage IIB. In this report, we investigated pro-angiogenic soluble factors in MF patients, as well as its pro-angiogenetic effects on tumor cells and stroma cells. We first evaluated the serum levels of pro-angiogenic factors in 9 MF patients without tumor formation and 8 MF patients with tumor formation. Among them, the serum MMP-9 and plasminogen activator inhibitors 1 (PAI-1) was significantly increased in MF with tumor formation compared in MF without tumor formation, leading to favorable formation of human dermal microvascular endothelial cells tube networks. Moreover, PAI-1 stimulation significantly increased the mRNA expression and protein production MMP-9 on monocytes derived M2 macrophages and HUT-78. Furthermore, since MMP-9 production from tumor cells as well as stromal cells is suppressed by bexarotene, we evaluate the baseline serum pro-angiogenic factors including MMP-9 in 16 patients with advanced cutaneous T cell lymphoma treated with bexarotene. The serum levels of MMP-2 and MMP-9 was significantly increased in bexarotene non-responded patients compared to responded patients. Our present study suggested the significance of MMP-9 and PAI-1 for the progression of MF stage toward to the tumor stage, and could be a therapeutic target in future.


Assuntos
Micose Fungoide , Neoplasias Cutâneas , Humanos , Angiogênese , Bexaroteno , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Metaloproteinase 9 da Matriz , Micose Fungoide/tratamento farmacológico , Micose Fungoide/patologia , Inibidor 1 de Ativador de Plasminogênio , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
7.
FASEB J ; 37(7): e22974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249328

RESUMO

Given the important role of m6A, the most common and reversible mRNA modification, in the pathogenesis of ischemic stroke, this study investigates the mechanisms of m6A methyltransferase METTL3 in neuronal damage in ischemic stroke. In silico analysis was used to pinpoint the expression of ANXA2, which was verified in clinical peripheral blood samples. SD rats were used for middle cerebral artery occlusion (MCAO) establishment. The experimental data suggested that T lymphocytes were increased in peripheral blood samples of ischemic stroke patients and MCAO rats. The MCAO rats were treated with anti-ANXA2 alone or combined with RP101075 (T lymphocyte infiltration inhibitor), followed by brain injury assessment. Oxygen-glucose deprivation/reoxygenation (OGD/R) was induced in primary cortical neurons, where shRNAs targeting ANXA2 or METTL3, or overexpression plasmids of METTL3 were introduced to verify the regulatory function for METTL3. Inhibition of T lymphocyte migration to the ischemic brain reduced brain injury in MCAO rats and neuronal damage in OGD/R-exposed neurons. Ablation of ANXA2 in T lymphocytes inhibited the migration of T lymphocytes to the ischemic brain and reduced neuronal damage. Mechanistically, METTL3 reduced ANXA2 expression in T lymphocytes through m6A modification and inhibited p38MAPK/MMP-9 pathway activation, exerting protective effects against neuronal damage in ischemic stroke. Overall, this study reveals the neuroprotective effects of METTL3-mediated ANXA2/p38MAPK/MMP-9 inhibition against ischemic stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Ratos , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Metaloproteinase 9 da Matriz , Neuroproteção , Ratos Sprague-Dawley , Acidente Vascular Cerebral/patologia , Humanos
8.
Cell Commun Signal ; 22(1): 344, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937789

RESUMO

BACKGROUND: Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS: EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS: EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION: Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.


Assuntos
Vesículas Extracelulares , Proteínas de Ligação a RNA , Macrófagos Associados a Tumor , Peixe-Zebra , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Macrófagos Associados a Tumor/metabolismo , Células HCT116 , MicroRNAs/genética , MicroRNAs/metabolismo , Movimento Celular/genética , Macrófagos/metabolismo
9.
Pharmacol Res ; 201: 107088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295916

RESUMO

Almonertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC). However, the development of resistance inevitably occurs and poses a major obstacle to the clinical efficacy of almonertinib. Therefore, a clear understanding of the mechanism is of great significance to overcome drug resistance to almonertinib in the future. In this study, NCI-H1975 cell lines resistant to almonertinib (NCI-H1975 AR) were developed by concentration-increasing induction and were employed for clarification of underlying mechanisms of acquired resistance. Through RNA-seq analysis, the HIF-1 and TGF-ß signaling pathways were significantly enriched by gene set enrichment analysis. Lipocalin-2 (LCN2), as the core node in these two signaling pathways, were found to be positively correlated to almonertinib-resistance in NSCLC cells. The function of LCN2 in the drug resistance of almonertinib was investigated through knockdown and overexpression assays in vitro and in vivo. Moreover, matrix metalloproteinases-9 (MMP-9) was further identified as a critical downstream effector of LCN2 signaling, which is regulated via the LCN2-MMP-9 axis. Pharmacological inhibition of MMP-9 could overcome resistance to almonertinib, as evidenced in both in vitro and in vivo models. Our findings suggest that LCN2 was a crucial regulator for conferring almonertinib-resistance in NSCLC and demonstrate the potential utility of targeting the LCN2-MMP-9 axis for clinical treatment of almonertinib-resistant lung adenocarcinoma.


Assuntos
Acrilamidas , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Lipocalina-2/genética , Metaloproteinase 9 da Matriz/genética , Receptores ErbB , Mutação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Endopeptidases
10.
Pharmacol Res ; 206: 107285, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942342

RESUMO

Heart failure (HF) is the leading cause of morbidity and mortality in cardiovascular diseases, being responsible for many hospitalizations annually. HF is considered a public health problem with significant economic and social impact, which makes searches essential for strategies that improve the ability to predict and diagnose HF. In this way, biomarkers can help in risk stratification for a more personalized approach to patients with HF. Preclinical and clinical evidence shows the participation of matrix metalloproteinase 9 (MMP-9) in the HF process. In this review, we will demonstrate the critical role that MMP-9 plays in cardiac remodeling and dysfunction. We will also show its importance as a blood biomarker in acute and chronic HF patients.

11.
Int J Legal Med ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691159

RESUMO

Matrix metalloproteinase-9 (MMP-9) is involved in tissue remodeling and in skin wound healing. The present study focuses on the MMP-9 expression in epidermal wound healing within 1 h after injury, to test whether MMP-9 can be used to estimate the time of injury in forensic practice.A sample consisting of 5 individuals undergoing surgery was analyzed. With the consent of the patients, sections of skin were removed from the surgical wound at predefined time intervals. For each subject, 8 sections were taken, one for each time interval defined at 0 '- 1' - 3 '- 5' - 10 '- 15' - 30 '- 60' minutes. The specimens were immunostained with MMP-9, and the number of positively stained cells was examined.The number of positively stained cells showed an increasing trend as a function of time. Less than 30 positively stained cells were found in all cases within 3 min. At the post-infliction time of 5 min, the number of positively stained cells exceeded 30 in 3 out of 5 cases. The number of MMP-positive cells exceeded 40 in all cases in over 10 min.In the light of these results, the count of MMP-9 positive cells might be a useful marker in the wound-age estimation within 1 h in forensic setting. More research is required to collect more samples and to compare samples from the hyperacute phase with those from several days after injury.

12.
BMC Infect Dis ; 24(1): 19, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166679

RESUMO

BACKGROUND: Severe pneumonia frequently causes irreversible sequelae and represents a major health burden for children under the age of 5. Matrix Metallopeptidase 9 (MMP9) is a zinc-dependent endopeptidase that is involved in various cellular processes. The correlation between MMP9 and the risk of severe childhood pneumonia remains unclear. METHODS: Here we assemble a case-control cohort to study the association of genetic variants in MMP9 gene with severe childhood pneumonia susceptibility in a Southern Chinese population (1034 cases and 8426 controls). RESULTS: Our results indicate that the allele G in rs3918262 SNP was significantly associated with an increased risk of severe pneumonia. Bioinformatic analyses by expression quantitative trait loci (eQTL), RegulomeDB and FORGEdb database analysis showed that rs3918262 SNP has potential regulatory effect on translational efficiency and protein level of MMP9 gene. Furthermore, MMP9 concentrations were significantly up-regulated in the bronchoalveolar lavages (BALs) of children with severe pneumonia. CONCLUSION: In summary, our findings suggest that MMP9 is a novel predisposing gene for childhood pneumonia.


Assuntos
Predisposição Genética para Doença , Metaloproteinase 9 da Matriz , Pneumonia , Criança , Humanos , Estudos de Casos e Controles , China , Genótipo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Polimorfismo de Nucleotídeo Único , Pneumonia/diagnóstico , Pneumonia/epidemiologia , Pneumonia/genética
13.
Mol Biol Rep ; 51(1): 540, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642151

RESUMO

BACKGROUND: The MMP-9 is a known player in atherosclerosis, yet associations of the MMP-9 -1562 C/T variant (rs3918242) with various atherosclerotic phenotypes and tissue mRNA expression are still contradictory. This study aimed to investigate the MMP-9 -1562 C/T variant, its mRNA and protein expression in carotid plaque (CP) tissue, as a risk factor for CP presence and as a marker of different plaque phenotypes (hyperechoic and hypoechoic) in patients undergoing carotid endarterectomy. The MnSOD as an MMP-9 negative regulator was also studied in relation to CP phenotypes. METHODS AND RESULTS: Genotyping of 770 participants (285 controls/485 patients) was done by tetra-primer ARMS PCR. The MMP-9 mRNA expression in 88 human CP tissues was detected by TaqMan® technology. The protein levels of MMP-9 and MnSOD were assessed by Western blot analysis. The MMP-9 -1562 C/T variant was not recognized as a risk factor for plaque presence or in predisposing MMP-9 mRNA and protein levels in plaque tissue. Patients with hypoechoic plaques had significantly lower MMP-9 mRNA and protein levels than those with hyperechoic plaque (p = 0.008, p = 0.003, respectively). MnSOD protein level was significantly higher in hypoechoic plaque compared to hyperechoic (p = 0.039). MMP-9 protein expression in CP tissue was significantly affected by sex and plaque type interaction (p = 0.009). CONCLUSIONS: Considering the differences of MMP-9 mRNA and protein expression in CP tissue regarding different plaque phenotypes and the observed sex-specific effect, the role of MMP-9 in human atherosclerotic plaques should be further elucidated.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Metaloproteinase 9 da Matriz , Placa Aterosclerótica , Feminino , Humanos , Masculino , Aterosclerose/genética , Artérias Carótidas , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38884920

RESUMO

PURPOSE: Aging contributes significantly to cardiovascular diseases and cardiac dysfunction, leading to the upregulation of matrix metalloproteinase-9 (MMP-9) in the heart and a significant decrease in hydrogen sulfide (H2S) content, coupled with impaired cardiac diastolic function. This study explores whether supplementing exogenous hydrogen sulfide during aging ameliorates the decline in H2S concentration in the heart, suppresses MMP-9 expression, and improves the age-associated impairment in cardiac morphology and function. METHODS: We collected plasma from healthy individuals of different ages to determine the relationship between aging and H2S and MMP-9 levels through Elisa detection and liquid chromatography-tandem mass spectrometry (LC/MC) detection of plasma H2S content. Three-month-old mice were selected as the young group, while 18-month-old mice were selected as the old group, and sodium hydrosulfide (NaHS) was injected intraperitoneally from 15 months old until 18 months old as the old + NaHS group. Plasma MMP-9 content was detected using Elisa, plasma H2S content, cardiac H2S content, and cystathionine gamma-lyase (CSE) activity were detected using LC/MC, and cardiac function was detected using echocardiography. Heart structure was assessed using hematoxylin and eosin staining, Masone staining was used to detect the degree of cardiac fibrosis, while western blot was used to detect the expression of MMP-9, CSE, and aging marker proteins. Knockdown of MMP-9 and CSE in H9c2 cells using small interfering RNA was carried out to determine the upstream-downstream relationship between MMP-9 and CSE. RESULTS: H2S content in the plasma of healthy individuals decreases with escalating age, whereas MMP-9 level rises with age progression. Aging leads to a decrease in H2S levels in the heart and plasma of mice, severe impairment of cardiac diastolic function, interstitial relaxation, and fibrosis of the heart. Supplementing with exogenous H2S can improve these phenomena. CONCLUSION: H2S maintains the structure and function of the heart by inhibiting the expression of MMP-9 during the aging process.

15.
Exp Cell Res ; 430(1): 113693, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392963

RESUMO

Neuropeptide FF (NPFF) belongs to the RFamide peptide family. NPFF regulates a variety of physiological functions by binding to a G protein-coupled receptor (GPCR), NPFFR2. Epithelial ovarian cancer (EOC) is a leading cause of death among gynecological malignancies. The pathogenesis of EOC can be regulated by many local factors, including neuropeptides, through an autocrine/paracrine manner. However, to date, the expression and/or function of NPFF/NPFFR2 in EOC is undetermined. In this study, we show that the upregulation of NPFFR2 mRNA was associated with poor overall survival in EOC. The TaqMan probe-based RT-qPCR showed that NPFF and NPFFR2 were expressed in three human EOC cells, CaOV3, OVCAR3, and SKOV3. In comparison, NPFF and NPFFR2 expression levels were higher in SKOV3 cells than in CaOV3 or OVCAR3 cells. Treatment of SKOV3 cells with NPFF did not affect cell viability and proliferation but stimulated cell invasion. NPFF treatment upregulates matrix metalloproteinase-9 (MMP-9) expression. Using the siRNA-mediated knockdown approach, we showed that the stimulatory effect of NPFF on MMP-9 expression was mediated by the NPFFR2. Our results also showed that ERK1/2 signaling was activated in SKOV3 cells in response to the NPFF treatment. In addition, blocking the activation of ERK1/2 signaling abolished the NPFF-induced MMP-9 expression and cell invasion. This study provides evidence that NPFF stimulates EOC cell invasion by upregulating MMP-9 expression through the NPFFR2-mediated ERK1/2 signaling pathway.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Metaloproteinase 9 da Matriz/genética , Apoptose , Sistema de Sinalização das MAP Quinases , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Transdução de Sinais , Invasividade Neoplásica
16.
BMC Vet Res ; 20(1): 52, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341543

RESUMO

BACKGROUND: Tracheal collapse (TC), a common disease in dogs, is characterized by cough; however, little is known about the serum biomarkers that can objectively evaluate the severity of cough in canine TC. Furthermore, studies elucidating the relationship of fluoroscopic characteristics with the severity of cough are lacking. Therefore, this study aimed to evaluate the relationship between cough severity and clinical characteristics, fluoroscopic images, and new serum biomarkers in canine TC. RESULTS: Fifty-one client-owned dogs diagnosed with TC based on fluoroscopic and clinical signs were enrolled in this study and divided into three groups according to the severity of cough (grade of cough: 0, 1, and 2). Signalments, comorbidities, and fluoroscopic characteristics were compared among the groups retrospectively. The serum matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), surfactant protein-A (SP-A), and syndecan-1 (SDC-1) levels were measured in all groups. No significant differences in age, breed, sex, or clinical history were observed among the groups. Concomitant pharyngeal collapse increased significantly with the severity of cough (p = .031). Based on the fluoroscopic characteristics, the TC grade of the carinal region increased significantly and consistently with the grade of cough (p = .03). The serum MMP-9 level was significantly higher in the grade 2 group than that in the grade 0 group (p = .014). The serum IL-6 level was significantly lower in the grade 1 group than that in the grade 0 group (p = .020). The serum SP-A and SDC-1 levels did not differ significantly among the groups. CONCLUSIONS: The severity of cough with the progression of TC can be predicted with the fluoroscopic TC grade at the carinal region. MMP-9 may be used as an objective serum biomarker that represents cough severity to understand the pathogenesis.


Assuntos
Doenças do Cão , Metaloproteinase 9 da Matriz , Humanos , Cães , Animais , Estudos Transversais , Estudos Retrospectivos , Interleucina-6 , Tosse/veterinária , Biomarcadores , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/etiologia
17.
Mol Divers ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012564

RESUMO

Prolactinoma was the most common functional pituitary neuroendocrine tumor tissue type, which was caused by excessive proliferation of pituitary prolactin (PRL) cells. Drug therapy of dopamine receptor agonists was generally considered as the prior treatment for prolactinoma patients. However, there were still prolactinoma patients who were resistant to dopamine agonists. Studies have been reported that paeoniflorin can inhibit the secretion of PRL in prolactinoma cells lacking dopamine D2 receptor (D2R) expression, and paeoniflorin can be metabolized into albiflorin by intestinal flora in rats. The effect of albiflorin on prolactinoma has not been reported yet. In this study, network pharmacology was used to analyze the mechanism of paeoniflorin and its metabolite albiflorin as multi-target therapy for prolactinoma, and the experimental verification was carried out. In order to clarify the complex relationship among paeoniflorin, albiflorin and prolactinoma, we constructed a component-target-disease network, and further constructed interaction network, MMP9, EGFR, FGF2, FGFR1 and LGALS3 were screened as the core targets. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that paeoniflorin and albiflorin may be involved in various pathways in the treatment of prolactinoma, included relaxin signaling pathway and PI3K-Akt signaling pathway. Molecular docking analysis showed that paeoniflorin and albiflorin had good binding activity with MMP9. Western blotting results showed that paeoniflorin and albiflorin could significantly reduce the expression of MMP9, and ELISA results showed that paeoniflorin and albiflorin could significantly reduce the concentration of PRL in GH3 cells, and the reduce degree of albiflorin was stronger than paeoniflorin at 50 µM, which indicated that albiflorin might be a potential drug to treat prolactinoma, which can regulate prolactinoma through MMP9 and reduce the concentration of PRL. Our study provided a new therapeutic strategy for prolactinoma.

18.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396357

RESUMO

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Assuntos
Acetilcisteína , Sobrecarga de Ferro , Oligopeptídeos , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Caspases/metabolismo , Claudinas/genética , Giro Denteado/metabolismo , Giro Denteado/patologia , Dextranos/metabolismo , Dextranos/farmacologia , Regulação para Baixo , Glutationa/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ferro/metabolismo , Ferro/farmacologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Nestina/genética , Nestina/metabolismo , Nestina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Regulação para Cima , Oligopeptídeos/farmacologia , Heme Oxigenase-1/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo
19.
Can J Physiol Pharmacol ; 102(3): 196-205, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992301

RESUMO

Although the collagenase enzyme activity of matrix metalloproteinase-9 (MMP9) is well-documented, its non-enzymatic functions remain less understood. The interaction between intracellular superoxide dismutase-1 (SOD1) and MMP9 is known, with SOD1 suppressing MMP9. However, the mechanism by which MMP9, a secretory protein, influences the extracellular antioxidant superoxide dismutase-3 (SOD3) is not yet clear. To explore MMP9's regulatory impact on SOD3, we employed human embryonic kidney-293 cells, transfecting them with MMP9 overexpresssion and catalytic-site mutant plasmids. Additionally, MMP9 overexpressing cells were treated with an MMP9 activator and inhibitor. Analyses of both cell lysates and culture medium provided insights into MMP9's intracellular and extracellular regulatory roles. In-silico analysis and experimental approaches like proximal ligation assay and co-immunoprecipitation were utilized to delineate the protein-protein interactions between MMP9 and SOD3. Our findings indicate that activated MMP9 enhances SOD3 levels, a regulation not hindered by MMP9 inhibitors. Intriguingly, catalytically inactive MMP9 appeared to reduce SOD3 levels, likely due to MMP9's binding with SOD3, leading to their proteolytic degradation. This MMP9 influence on SOD3 was consistent in both intracellular and extracellular environments, suggesting a parallel in MMP9-SOD3 interactions across these domains. Ultimately, this study unveils a novel interaction between MMP9 and SOD3, highlighting the unique regulatory role of catalytically inactive MMP9 in diminishing SOD3 levels, contrasting its usual upregulation by active MMP9.


Assuntos
Metaloproteinase 9 da Matriz , Superóxido Dismutase , Humanos , Superóxido Dismutase-1/genética , Antioxidantes , Bioensaio
20.
Biochem J ; 480(14): 1097-1107, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37401540

RESUMO

Matrix metalloproteinase-9 (MMP-9) is an endopeptidase that remodels the extracellular matrix. MMP-9 has been implicated in several diseases including neurodegeneration, arthritis, cardiovascular diseases, fibrosis and several types of cancer, resulting in a high demand for MMP-9 inhibitors for therapeutic purposes. For such drug design efforts, large amounts of MMP-9 are required. Yet, the catalytic domain of MMP-9 (MMP-9Cat) is an intrinsically unstable enzyme that tends to auto-cleave within minutes, making it difficult to use in drug design experiments and other biophysical studies. We set our goal to design MMP-9Cat variant that is active but stable to auto-cleavage. For this purpose, we first identified potential auto-cleavage sites on MMP-9Cat using mass spectroscopy and then eliminated the auto-cleavage site by predicting mutations that minimize auto-cleavage potential without reducing enzyme stability. Four computationally designed MMP-9Cat variants were experimentally constructed and evaluated for auto-cleavage and enzyme activity. Our best variant, Des2, with 2 mutations, was as active as the wild-type enzyme but did not exhibit auto-cleavage after 7 days of incubation at 37°C. This MMP-9Cat variant, with an identical with MMP-9Cat WT active site, is an ideal candidate for drug design experiments targeting MMP-9 and enzyme crystallization experiments. The developed strategy for MMP-9CAT stabilization could be applied to redesign other proteases to improve their stability for various biotechnological applications.


Assuntos
Endopeptidases , Metaloproteinase 9 da Matriz , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Endopeptidases/metabolismo , Espectrometria de Massas , Domínio Catalítico , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA