RESUMO
Upon stress, eukaryotes typically reprogram their translatome through GCN2-mediated phosphorylation of the eukaryotic translation initiation factor, eIF2α, to inhibit general translation initiation while selectively translating essential stress regulators. Unexpectedly, in plants, pattern-triggered immunity (PTI) and response to other environmental stresses occur independently of the GCN2/eIF2α pathway. Here, we show that while PTI induces mRNA decapping to inhibit general translation, defense mRNAs with a purine-rich element ("R-motif") are selectively translated using R-motif as an internal ribosome entry site (IRES). R-motif-dependent translation is executed by poly(A)-binding proteins (PABPs) through preferential association with the PTI-activating eIFiso4G over the repressive eIF4G. Phosphorylation by PTI regulators mitogen-activated protein kinase 3 and 6 (MPK3/6) inhibits eIF4G's activity while enhancing PABP binding to the R-motif and promoting eIFiso4G-mediated defense mRNA translation, establishing a link between PTI signaling and protein synthesis. Given its prevalence in both plants and animals, the PABP/R-motif translation initiation module may have a broader role in reprogramming the stress translatome.
Assuntos
Fator de Iniciação Eucariótico 4G , Proteínas de Ligação a Poli(A) , Animais , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , Purinas , RNA Mensageiro/metabolismoRESUMO
The plant hormone auxin plays a key role to maintain root stem cell identity which is essential for root development. However, the molecular mechanism by which auxin regulates root distal stem cell (DSC) identity is not well understood. In this study, we revealed that the cell cycle factor DPa is a vital regulator in the maintenance of root DSC identity through multiple auxin signaling cascades. On the one hand, auxin positively regulates the transcription of DPa via AUXIN RESPONSE FACTOR 7 and ARF19. On the other hand, auxin enhances the protein stability of DPa through MITOGEN-ACTIVATED PROTEIN KINASE 3 (MPK3)/MPK6-mediated phosphorylation. Consistently, mutation of the identified three threonine residues (Thr10, Thr25, and Thr227) of DPa to nonphosphorylated form alanine (DPa3A) highly decreased the phosphorylation level of DPa, which decreased its protein stability and affected the maintenance of root DSC identity. Taken together, this study provides insight into the molecular mechanism of how auxin regulates root distal stem cell identity through the dual regulations of DPa at both transcriptional and posttranslational levels.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Raízes de Plantas/metabolismo , Células-Tronco/metabolismoRESUMO
Plants have evolved a sophisticated immunity system for specific detection of pathogens and rapid induction of measured defences. Over- or constitutive activation of defences would negatively affect plant growth and development. Hence, the plant immune system is under tight positive and negative regulation. MAP kinase phosphatase1 (MKP1) has been identified as a negative regulator of plant immunity in model plant Arabidopsis. However, the molecular mechanisms by which MKP1 regulates immune signalling in wheat (Triticum aestivum) are poorly understood. In this study, we investigated the role of TaMKP1 in wheat defence against two devastating fungal pathogens and determined its subcellular localization. We demonstrated that knock-down of TaMKP1 by CRISPR/Cas9 in wheat resulted in enhanced resistance to rust caused by Puccinia striiformis f. sp. tritici (Pst) and powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt), indicating that TaMKP1 negatively regulates disease resistance in wheat. Unexpectedly, while Tamkp1 mutant plants showed increased resistance to the two tested fungal pathogens they also had higher yield compared with wild-type control plants without infection. Our results suggested that TaMKP1 interacts directly with dephosphorylated and activated TaMPK3/4/6, and TaMPK4 interacts directly with TaPAL. Taken together, we demonstrated TaMKP1 exert negative modulating roles in the activation of TaMPK3/4/6, which are required for MAPK-mediated defence signalling. This facilitates our understanding of the important roles of MAP kinase phosphatases and MAPK cascades in plant immunity and production, and provides germplasm resources for breeding for high resistance and high yield.
Assuntos
Sistemas CRISPR-Cas , Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Triticum , Triticum/genética , Triticum/microbiologia , Triticum/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/fisiologia , Mutagênese , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Puccinia/fisiologia , Plantas Geneticamente ModificadasRESUMO
Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gß (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Subunidades beta da Proteína de Ligação ao GTP , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , FosforilaçãoRESUMO
Cytokinins are phytohormones that regulate plant development, growth, and responses to stress. In particular, cytokinin has been reported to negatively regulate plant adaptation to high salinity; however, the molecular mechanisms that counteract cytokinin signaling and enable salt tolerance are not fully understood. Here, we provide evidence that salt stress induces the degradation of the cytokinin signaling components Arabidopsis (Arabidopisis thaliana) response regulator 1 (ARR1), ARR10 and ARR12. Furthermore, the stress-activated mitogen-activated protein kinase 3 (MPK3) and MPK6 interact with and phosphorylate ARR1/10/12 to promote their degradation in response to salt stress. As expected, salt tolerance is decreased in the mpk3/6 double mutant, but enhanced upon ectopic MPK3/MPK6 activation in an MKK5DD line. Importantly, salt hypersensitivity phenotypes of the mpk3/6 line were significantly alleviated by mutation of ARR1/12. The above results indicate that MPK3/6 enhance salt tolerance in part via their negative regulation of ARR1/10/12 protein stability. Thus, our work reveals a new molecular mechanism underlying salt-induced stress adaptation and the inhibition of plant growth, via enhanced degradation of cytokinin signaling components.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteína Quinase 3 Ativada por Mitógeno , Tolerância ao Sal/genéticaRESUMO
Photosynthesis is the basis of almost all life on earth and is the main component of crop yield that contributes to the carbohydrate partitioning to the grains. Maintaining the photosynthetic efficiency of plants in challenging environmental conditions by regulating the associated factors is a potential research arena which will help in the improvement of crop yield. Phosphorylation is known to play a pivotal role in the regulation of photosynthesis. Mitogen Activated Protein Kinases (MAPKs) cascade although known to regulate a diverse range of processes does not have any exact reported function in the regulation of photosynthesis. To elucidate the regulatory role of MAPKs in photosynthesis we investigated the changes in net photosynthesis rate and related parameters in DEX inducible over-expressing (OE) lines of two members of MAPK gene family namely, OsMPK3 and OsMPK6 in rice. Interestingly, significant changes were found in net photosynthesis rate and related physiological parameters in OsMPK3 and OsMPK6-OE lines compared to its wild-type relatives. OsMPK3 and OsMPK6 have regulatory effects on nuclear-encoded photosynthetic genes. Untargeted metabolite profiling reveals a higher accumulation of sugars and their derivatives in MPK6 overexpressing plants and a lower accumulation of sugars and organic acids in MPK3 overexpressing plants. The accumulation of amino acids was found in abundance in both MPK3 and MPK6 overexpressing plants. Understanding the effects of MPK3 and MPK6 on the CO2 assimilation of rice plants under normal growth conditions, will help in devising strategies that can be extended for crop improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01383-9.
RESUMO
Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Plastídeos/metabolismoRESUMO
Ethylene response factor (ERF) Group VII members generally function in regulating plant growth and development, abiotic stress responses, and plant immunity in Arabidopsis; however, the details of the regulatory mechanism by which Group VII ERFs mediate plant immune responses remain elusive. Here, we characterized one such member, ERF72, as a positive regulator that mediates resistance to the necrotrophic pathogen Botrytis cinerea. Compared with the wild-type (WT), the erf72 mutant showed lower camalexin concentration and was more susceptible to B. cinerea, while complementation of ERF72 in erf72 rescued the susceptibility phenotype. Moreover, overexpression of ERF72 in the WT promoted camalexin biosynthesis and increased resistance to B. cinerea. We identified the camalexin-biosynthesis genes PAD3 and CYP71A13 and the transcription factor WRKY33 as target genes of ERF72. We also determined that MPK3 and MPK6 phosphorylated ERF72 at Ser151 and improved its transactivation activity, resulting in increased camalexin concentration and increased resistance to B. cinerea. Thus, ERF72 acts in plant immunity to coordinate camalexin biosynthesis both directly by regulating the expression of biosynthetic genes and indirectly by targeting WRKK33.
Assuntos
Proteínas de Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis , Regulação da Expressão Gênica de Plantas , Indóis , Fosforilação , Doenças das Plantas/genética , TiazóisRESUMO
Arabidopsis thaliana mitogen-activated protein kinases 3 and 6 (MPK3/6) are activated transiently during pathogen-associated molecular pattern-triggered immunity (PTI) and durably during effector-triggered immunity (ETI). The functional differences between these two kinds of activation kinetics and how they coordinate the two layers of plant immunity remain poorly understood. Here, by suppressor analyses, we demonstrate that ETI-mediating nucleotide-binding domain leucine-rich repeat receptors (NLRs) and the NLR signaling components NDR1 and EDS1 can promote the salicylic acid sector of defense downstream of MPK3 activity. Moreover, we provide evidence that both sustained and transient MPK3/6 activities positively control the expression of several NLR genes, including AT3G04220 and AT4G11170. We further show that NDR1 and EDS1 contribute to the up-regulation of these two NLRs in both an ETI and a PTI context. Remarkably, whereas in ETI MPK3/6 activities are dependent on NDR1 and EDS1, they are not in PTI, suggesting crucial differences in the two signaling pathways. Finally, we demonstrate that expression of the NLR AT3G04220 is sufficient to induce expression of defense genes from the salicylic acid branch. Overall, this study expands our knowledge of MPK3/6 functions during immunity and provides new insights into the intricate interplay of PTI and ETI.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo , Transdução de Sinais/genéticaRESUMO
In both plants and animals, multiple cellular processes must be orchestrated to ensure proper organogenesis. The cell division patterns control the shape of growing organs, yet how they are precisely determined and coordinated is poorly understood. In plants, the distribution of the phytohormone auxin is tightly linked to organogenesis, including lateral root (LR) development. Nevertheless, how auxin regulates cell division pattern during lateral root development remains elusive. Here, we report that auxin activates Mitogen-Activated Protein Kinase (MAPK) signaling via transmembrane kinases (TMKs) to control cell division pattern during lateral root development. Both TMK1/4 and MKK4/5-MPK3/6 pathways are required to properly orient cell divisions, which ultimately determine lateral root development in response to auxin. We show that TMKs directly and specifically interact with and phosphorylate MKK4/5, which is required for auxin to activate MKK4/5-MPK3/6 signaling. Our data suggest that TMK-mediated noncanonical auxin signaling is required to regulate cell division pattern and connect auxin signaling to MAPK signaling, which are both essential for plant development.
Assuntos
Divisão Celular/genética , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/genética , Desenvolvimento Vegetal/genética , Raízes de Plantas/genética , Transdução de Sinais/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação/genéticaRESUMO
MicroRNAs (miRNAs) are one of the prime regulators of gene expression. The recruitment of hyponastic leaves 1 (HYL1), a double-stranded RNA binding protein also termed as DRB1, to the microprocessor complex is crucial for accurate primary-miRNA (pri-miRNA) processing and the accumulation of mature miRNA in Arabidopsis thaliana. In the present study, we investigated the role of the MAP kinase-mediated phosphorylation of AtHYL1 and its sub-cellular activity. AtMPK3 specifically phosphorylates AtHYL1 at the evolutionarily conserved serine-42 present at the N-terminal regions and plays an important role in its nuclear-cytosolic shuttling. Additionally, we identified that AtHYL1 is cleaved by trypsin-like proteases into an N-terminal fragment, which renders its subcellular activities. We, for the first time, report that the dimerization of AtHYL1 not only takes place in the nucleus, but also in the cytosol, and the C-terminal of AtHYL1 has a role in regulating its stability, as well as its subcellular localization. AtHYL1 is hyper-phosphorylated in mpk3 mutants, leading to higher stability and reduced degradation. Our data show that AtMPK3 is a negative regulator of AtHYL1 protein stability and that the AtMPK3-induced phosphorylation of AtHYL1 leads to its protein degradation.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Estabilidade Proteica , Processamento Pós-Transcricional do RNARESUMO
Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MAPK3 or MPK3) and MPK6 play important signaling roles in plant immunity and growth/development. MAPK KINASE4 (MKK4) and MKK5 function redundantly upstream of MPK3 and MPK6 in these processes. YODA (YDA), also known as MAPK KINASE KINASE4 (MAPKKK4), is upstream of MKK4/MKK5 and forms a complete MAPK cascade (YDA-MKK4/MKK5-MPK3/MPK6) in regulating plant growth and development. In plant immunity, MAPKKK3 and MAPKKK5 function redundantly upstream of the same MKK4/MKK5-MPK3/MPK6 module. However, the residual activation of MPK3/MPK6 in the mapkkk3 mapkkk5 double mutant in response to flg22 pathogen-associated molecular pattern (PAMP) treatment suggests the presence of additional MAPKKK(s) in this MAPK cascade in signaling plant immunity. To investigate whether YDA is also involved in plant immunity, we attempted to generate mapkkk3 mapkkk5 yda triple mutants. However, it was not possible to recover one of the double mutant combinations (mapkkk5 yda) or the triple mutant (mapkkk3 mapkkk5 yda) due to a failure of embryogenesis. Using the clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (Cas9) approach, we generated weak, N-terminal deletion alleles of YDA, yda-del, in a mapkkk3 mapkkk5 background. PAMP-triggered MPK3/MPK6 activation was further reduced in the mapkkk3 mapkkk5 yda-del mutant, and the triple mutant was more susceptible to pathogen infection, suggesting YDA also plays an important role in plant immune signaling. In addition, MAPKKK5 and, to a lesser extent, MAPKKK3 were found to contribute to gamete function and embryogenesis, together with YDA. While the double homozygous mapkkk3 yda mutant showed the same growth and development defects as the yda single mutant, mapkkk5 yda double mutant and mapkkk3 mapkkk5 yda triple mutants were embryo lethal, similar to the mpk3 mpk6 double mutants. These results demonstrate that YDA, MAPKKK3, and MAPKKK5 have overlapping functions upstream of the MKK4/MKK5-MPK3/MPK6 module in both plant immunity and growth/development.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Desenvolvimento Vegetal , Imunidade Vegetal/genéticaRESUMO
The zinc finger transcription factor OXIDATIVE STRESS 2 (OXS2) was previously reported to be involved in oxidative stress tolerance and stress escape. Here we report that an Arabidopsis oxs2-1 mutant is also more sensitive to salt stress. Conversely, the overproduction of a C-terminal fragment of OXS2, the 'AT3' fragment, can enhance salt tolerance in Arabidopsis by upregulating the transcription of at least six salt-induced genes: COR15A, COR47, RD29B, KIN1, ACS2 and ACS6. Mutant analysis showed that the AT3-mediated salt tolerance requires MPK3, MPK6 and 14-3-3Ω. AT3 was shown to interact with MPK3 in planta, with 14-3-3Ω as a likely linker protein. AT3 can be phosphorylated by MPK3 during salt stress, upon which it relocates from the cytoplasm to the nucleus. It appears that the phosphorylation-induced nuclear localization of OXS2 contributes a positive role to the salt stress response.
Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Tolerância ao Sal , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fragmentos de Peptídeos/genética , Fosforilação , Estresse Salino/genética , Tolerância ao Sal/genética , Fatores de Transcrição/genéticaRESUMO
Exposure to low, non-freezing temperatures develops freezing tolerance in many plant species. Such process is called cold acclimation. Molecular changes undergone during cold acclimation are orchestrated by signalling networks including MAP kinases. Structure and function of chloroplasts are affected by low temperatures. The aim of this work was to study how the MAP kinases MPK3 and MPK6 are involved in the chloroplast performance upon a long period of cold acclimation. We used Arabidopsis thaliana wild type and mpk3 and mpk6 mutants. Adult plants were acclimated during 7 days at 4 °C and then measurements of PSII performance and chloroplast ultrastructure were carried out. Only the mpk6 acclimated plants showed a high freezing sensitivity. No differences in the PSII function were observed in the plants from the three genotypes exposed to non-acclimated or acclimated conditions. The acclimation of wild-type plants produced severe alterations in the ultrastructure of chloroplast and thylakoids, which was more accentuated in the mpk plants. However, only the mpk6 mutant was unable to internalize the damaged chloroplasts into the vacuole. These results indicate that cold acclimation induces alterations in the chloroplast architecture leading to preserve an optimal performance of PSII. MPK3 and MPK6 are necessary to regulate these morphological changes, but besides, MPK6 is needed to the vacuolization of the damaged chloroplasts, suggesting a role in the chloroplast recycling during cold acclimation. The latter could be quite relevant, since it could explain why this mutant is the only one showing an extremely low freezing tolerance.
Assuntos
Aclimatação/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Clorofila/metabolismo , Cloroplastos/metabolismo , Temperatura Baixa/efeitos adversos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , MutaçãoRESUMO
Cold and freezing stresses severely affect plant growth, development, and survival rate. Some plant species have evolved a process known as cold acclimation, in which plants exposed to temperatures above 0 °C trigger biochemical and physiological changes to survive freezing. During this response, several signaling events are mediated by transducers, such as mitogen activated protein kinase (MAPK) cascades. Plasma membrane H+-ATPase is a key enzyme for the plant cell life under regular and stress conditions. Using wild type and mpk3 and mpk6 knock out mutants in Arabidopsis thaliana, we explored the transcriptional, translational, and 14-3-3 protein regulation of the plasma membrane H+-ATPase activity under the acclimation process. The kinetic analysis revealed a differential profiling of the H+-ATPase activity depending on the presence or absence of MPK3 or MPK6 under non-acclimated or acclimated conditions. Negative regulation of the plasma membrane H+-ATPase activity was found to be exerted by MPK3 in non-acclimated conditions and by MPK6 in acclimated conditions, describing a novel form of regulation of this master ATPase. The MPK6 regulation involved changes in plasma membrane fluidity. Moreover, our results indicated that MPK6 is a critical regulator in the process of cold acclimation that leads to freezing tolerance and further survival.
Assuntos
Aclimatação/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Membrana Celular/enzimologia , Temperatura Baixa , Proteínas Quinases Ativadas por Mitógeno/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Congelamento , Cinética , Fluidez de Membrana , Biossíntese de Proteínas , Transcrição GênicaRESUMO
Pathogen secreted cell-wall-degrading enzymes (CWDEs) induce plant innate immune responses. The expression of rice transcription factor APETALA2/ethylene response factor-152 (OsAP2/ERF152) is enhanced in leaves upon treatment with different CWDEs and upon wounding. Ectopic expression of OsAP2/ERF152 in Arabidopsis leads to induction of immune responses such as callose deposition and upregulation of both salicylic acid- and jasmonic acid/ethylene-responsive defense genes. Arabidopsis transgenics expressing OsAP2/ERF152 exhibited resistance to infections caused by both bacterial and fungal pathogens (Pseudomonas syringae pv. tomato DC3000 and Rhizoctonia solani AG1-IA, respectively). Ectopic expression of OsAP2/ERF152 results in transient activation of mitogen-activated protein kinases 3/6 (MPK3/6), which could be leading to the induction of a broad range immunity in Arabidopsis.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Micoses , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Humanos , Doenças das Plantas , Pseudomonas syringae , Ácido SalicílicoRESUMO
Secondary plant metabolites, represented by indole glucosinolates (IGS) and camalexin, play important roles in Arabidopsis immunity. Previously, we demonstrated the importance of MPK3 and MPK6, two closely related MAPKs, in regulating Botrytis cinerea (Bc)-induced IGS and camalexin biosynthesis. Here we report that CPK5 and CPK6, two redundant calcium-dependent protein kinases (CPKs), are also involved in regulating the biosynthesis of these secondary metabolites. The loss-of-function of both CPK5 and CPK6 compromises plant resistance to Bc. Expression profiling of CPK5-VK transgenic plants, in which a truncated constitutively active CPK5 is driven by a steroid-inducible promoter, revealed that biosynthetic genes of both IGS and camalexin pathways are coordinately upregulated after the induction of CPK5-VK, leading to high-level accumulation of camalexin and 4-methoxyindole-3-yl-methylglucosinolate (4MI3G). Induction of camalexin and 4MI3G, as well as the genes in their biosynthesis pathways, is greatly compromised in cpk5 cpk6 mutant in response to Bc. In a conditional cpk5 cpk6 mpk3 mpk6 quadruple mutant, Bc resistance and induction of IGS and camalexin are further reduced in comparison to either cpk5 cpk6 or conditional mpk3 mpk6 double mutant, suggesting that both CPK5/CPK6 and MPK3/MPK6 signaling pathways contribute to promote the biosynthesis of 4MI3G and camalexin in defense against Bc.
Assuntos
Glucosinolatos/metabolismo , Indóis/metabolismo , Tiazóis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/patogenicidade , Regulação da Expressão Gênica de Plantas/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Imunidade Vegetal/fisiologia , Transdução de Sinais/fisiologiaRESUMO
In plants, mitogen-activated protein kinase (MAPK) cascades are involved in regulating many biological processes including immunity. They relay signals from membrane-residing immune receptors to downstream components for defense activation. Arabidopsis MPK3/6 and MPK4 are activated in two parallel MAPK cascades during PAMP-triggered immunity. MPK3/6 have been implicated in the activation of various immune responses and their inactivation leads to compromised defense against pathogens. On the other hand, the MEKK1-MKK1/2-MPK4 cascade plays critical roles in basal resistance. Disruption of this MAPK cascade results in constitutive defense responses mediated by the NB-LRR protein SUMM2. Interestingly, SUMM2 guards the MEKK1-MKK1/2-MPK4 cascade activity indirectly through monitoring the phosphorylation status of CRCK3, which is a substrate of MPK4. From the pathogens' side, a number of effectors are shown to target various components of MAPK cascades in plants. Inactivation of MPK4 by the Pseudomonas effector HopAI1 triggers SUMM2-mediated immunity. Together, these findings suggest intricate interplays between PAMP-triggered immunity and effector-triggered immunity via MAPK signaling.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
The mitogen-activated protein kinase (MAPK) Mpk3/MpkC resembles the MAPK Hog1 but does not necessarily function in some filamentous fungi. Here, we compared functions of Mpk3 and Hog1 in Beauveria bassiana, a filamentous fungal insect pathogen, by multi-phenotypic analyses of their single/double deletion mutants. Growth defects of Δmpk3 were moderate on all 14 minimal media with different carbon or nitrogen sources and less severe than those of Δhog1 on most media tested. The double deletion mutant suffered significantly more severe growth defects than those observed in Δmpk3 and Δhog1, suggesting overlapping and collaborative roles of Mpk3 and Hog1 in uptake of six carbon and four nitrogen sources during normal growth. Despite little impact on conidiation capacity, mpk3 deletion slowed down conidial germination as much as hog1 or double deletion. Conidial resistance to UV-B irradiation decreased less in Δmpk3 than in Δhog1 or in the double mutant. The fungal virulence was similarly attenuated for all deletion mutants against Galleria mellonella larvae through normal cuticle infection. Intriguingly, the Δmpk3 mutant displayed null response to high osmolarity and fludioxonil fungicide, to which both Δhog1 and double mutants were hypersensitive and highly resistant, respectively, but it was more sensitive to a 3-h heat shock at 40 °C than Δhog1 during normal incubation. Western blot hybridization demonstrated that Mpk3 could collaborate with Hog1 in response to heat shock rather than to the chemical stresses. Altogether, Mpk3 collaborates with Hog1 only in response to heat shock and functions in sustaining the pest control potential of B. bassiana.
Assuntos
Beauveria/fisiologia , Lepidópteros/microbiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Beauveria/genética , Beauveria/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico , Larva , Proteínas Quinases Ativadas por Mitógeno/genética , Fenótipo , Esporos Fúngicos , Estresse Fisiológico , VirulênciaRESUMO
KEY MESSAGE: MKK9-MPK3/MPK6 cascade positively regulates IGSs' biosynthetic genes. Glucosinolates (GSs), secondary metabolites well known for their roles in plant defense, have been implicated to play an important role in plant abiotic stress response; however, the exact role in these processes and the underlying regulatory mechanisms remain elusive. Mitogen-activated protein kinase (MAPK) cascades are extensively involved in plant abiotic stress response. In this study, we examined the levels of four indolic glucosinolates (IGSs) in the shoots of Arabidopsis seedlings under mild osmotic stress conditions and found that 4-methoxy indolyl-3-methyl glucosinolate (4MI3G) accumulated and that MPK3 and MPK6 were activated. Loss of MPK3 or MPK6 function led to a reduction in mild osmotic stress-induced 4MI3G. Further analyses revealed that MKK9 acts upstream of MPK3 and MPK6 to promote 4MI3G accumulation. The level of 4MI3G induced by mild osmotic stress was reduced in the mkk9 mutant. Conversely, 4MI3G increased in MKK9 DD , a constitutively activate mutant of MKK9. Gene expression analyses indicated that the activated MKK9-MPK3/MPK6 cascade upregulates the IGS biosynthetic genes. Moreover, the lack of MYB51, the transcription factor controlling biosynthetic genes responsible for synthesizing the IGS core structure, or CYP81F2, the enzyme catalyzing core structure modification to 4MI3G, significantly reduced mild osmotic stress- and MKK9 DD -induced 4MI3G. Thus, our study demonstrates that mild osmotic stress promotes 4MI3G biosynthesis and the accumulation in Arabidopsis through activation of the MKK9-MPK3/MPK6 cascade and provides an MAPK-mediated signaling pathway for the IGS response to abiotic stress in plants.