Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 296, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807115

RESUMO

BACKGROUND: The SARS-CoV-2 virus causes severe COVID-19 in one-fifth of patients. In addition to high mortality, infection may induce respiratory failure and cardiovascular complications associated with inflammation. Acute or prolonged inflammation results in organ fibrosis, the cause of which might be endothelial disorders arising during the endothelial-mesenchymal transition (EndMT). METHODS: HUVECs and HMEC-1 cells were stimulated with SARS-CoV-2 S (Spike) and N (Nucleocapsid) proteins, and EndMT induction was evaluated by studying specific protein markers via Western blotting. Wound healing and tube formation assays were employed to assess the potential of SARS-CoV-2 to stimulate changes in cell behaviour. MRTF nuclear translocation, ROS generation, TLR4 inhibitors, TGF-ß-neutralizing antibodies, and inhibitors of the TGF-ß-dependent pathway were used to investigate the role of the TGF-ß-MRTF signalling axis in SARS-CoV-2-dependent EndMT stimulation. RESULTS: Both viral proteins stimulate myofibroblast trans-differentiation. However, the N protein is more effective at EndMT induction. The TGF-ß-MRTF pathway plays a critical role in this process. The N protein preferentially favours action through TGF-ß2, whose secretion is induced through TLR4-ROS action. TGF-ß2 stimulates MRTF-A and MRTF-B nuclear translocation and strongly regulates EndMT. In contrast, the Spike protein stimulates TGF-ß1 secretion as a result of ACE2 downregulation. TGF-ß1 induces only MRTF-B, which, in turn, weakly regulates EndMT. Furthermore, aspirin, a common nonsteroidal anti-inflammatory drug, might prevent and reverse SARS-CoV-2-dependent EndMT induction through TGF-ß-MRTF pathway deregulation. CONCLUSION: The reported study revealed that SARS-CoV-2 infection induces EndMT. Moreover, it was demonstrated for the first time at the molecular level that the intensity of the EndMT triggered by SARS-CoV-2 infection may vary and depend on the viral protein involved. The N protein acts through TLR4-ROS-TGF-ß2-MRTF-A/B, whereas the S protein acts through ACE2-TGF-ß1-MRTF-B. Furthermore, we identified aspirin as a potential anti-fibrotic drug for treating patients with SARS-CoV-2 infection.


Assuntos
Aspirina , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , Transição Epitelial-Mesenquimal , SARS-CoV-2 , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus , Fator de Crescimento Transformador beta , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Fator de Crescimento Transformador beta/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Aspirina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fatores de Transcrição/metabolismo , Receptor 4 Toll-Like/metabolismo , Linhagem Celular , Transição Endotélio-Mesênquima , Fosfoproteínas
2.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216178

RESUMO

Around 45% of deaths in the EU and the US are due to fibrotic diseases. Although myofibroblasts are detected in various fibrotic tissues, they are mostly transdifferentiated from endothelial cells during the endothelial-mesenchymal transition (EndMT) induced by tumor growth factor-beta (TGF-ß) family members. Growing evidence indicates that oxidative stress might enhance the sensitivity and the effects of TGF-ß stimulation; however, the molecular mechanisms involved in the coordination of oxidative stress and TGF-ß inductions remain poorly understood. Our findings indicate for the first time that oxidative stress enhances mesenchymal trans-differentiation of human microvascular endothelial cells (HMEC-1 cells) and that the oxidative stress-dependent TGF-ß2-RhoA/Rac1-MRTF-A axis is critical for the induction of later stages of EndMT. This additive effect was manifested in TGF-ß1-stimulated and Snail-overexpressed cells, where it caused higher cell elongation and faster migration on collagen I layers. Additionally, Western blot assay indicated the presence of alterations in cell contraction and EndMT markers. We conclude that complex anti-fibrotic therapies based on the inhibition of MRTF activities and oxidative stress might be an attractive target for fibrosis treatment.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Estresse Oxidativo/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Miofibroblastos/metabolismo , Transdução de Sinais/fisiologia
3.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824297

RESUMO

Endothelial-mesenchymal transition (EndMT) is a crucial phenomenon in regulating the development of diseases, including cancer metastasis and fibrotic disorders. The primary regulators of disease development are zinc-finger transcription factors belonging to the Snail family. In this study, we characterized the myocardin-related transcription factor (MRTF)-dependent mechanisms of a human snail promoter regulation in TGF-ß-stimulated human endothelial cells. Although in silico analysis revealed that the snail promoter's regulatory fragment contains one GCCG and two SP1 motifs that could be occupied by MRTFs, the genetic study confirmed that MRTF binds only to SP1 sites to promote snail expression. The more accurate studies revealed that MRTF-A binds to both SP1 elements, whereas MRTF-B to only one (SP1near). Although we found that each MRTF alone is capable of inducing snail expression, the direct cooperation of these proteins is required to reinforce snail expression and promote the late stages of EndMT within 48 hours. Furthermore, genetic and biochemical analysis revealed that MRTF-B alone could induce the late stage of EndMT. However, it requires a prolonged time. Therefore, we concluded that MRTFs might cause EndMT in a fast- and slow-dependent manner. Based on MRTF-dependent Snail upregulation, we recognized that TGF-ß1, as an MRTF-B regulator, is involved in slow EndMT induction, whereas TGF-ß2, which altered both MRTF-A and MRTF-B expression, promotes a fast EndMT process.


Assuntos
Transição Epitelial-Mesenquimal , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição da Família Snail/metabolismo , Ativação Transcricional
4.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2283-2296, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28893556

RESUMO

Increasing evidence indicates that the tumor microenvironment is a critical factor supporting cancer progression, chemoresistance and metastasis. Recently, cancer-associated fibroblasts (CAFs) have been recognized as a crucial tumor stromal component promoting cancer growth and invasiveness via modulation of the extracellular matrix (ECM) structure, tumor metabolism and immune reprogramming. One of the main sources of CAFs are endothelial cells undergoing the endothelial-mesenchymal transition (EndMT). EndMT is mainly promoted by the Transforming Growth Factor-ß (TGF-ß) family secreted by tumor cells, though the role of particular members in EndMT regulation remains poorly understood. Our findings demonstrate that TGF-ß2 induces mesenchymal transdifferentiation of human microvascular endothelial cells (HMEC-1 cells) to CAF-like cells in association with elongated cell morphology, modulation of stress fiber organization, higher α-SMA protein levels and activation of RhoA and Rac-1 pathways. Such regulation is similar to that observed in cells maintained using conditioned medium from invasive colorectal cancer cell line culture. Furthermore, TGF-ß2 stimulation resulted in myocardin-related transcription factor (MRTF) activation and upregulation. Our results demonstrate for the first time that such interaction is sufficient for integrin-linked kinase (ILK) overexpression. ILK upregulation also enhanced MRTF activation via RhoA and Rac-1-MMP9 via inside-out integrin activation. Herein, we propose a new ILK-MMP9-MRTF axis that appears to be critical for EndMT differentiation of endothelial to CAF-like cells. Thus, it might be an attractive target for cancer treatment.


Assuntos
Neoplasias Colorretais/genética , Metaloproteinase 9 da Matriz/genética , Proteínas Serina-Treonina Quinases/genética , Transativadores/genética , Fator de Crescimento Transformador beta2/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Endotélio/metabolismo , Endotélio/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais , Fator de Crescimento Transformador beta2/genética , Microambiente Tumoral/genética , Proteína rhoA de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA