Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EMBO Rep ; 25(1): 45-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177900

RESUMO

Fusion of the outer mitochondrial membrane (OMM) is regulated by mitofusin 1 (MFN1) and 2 (MFN2), yet the differential contribution of each of these proteins is less understood. Mitochondrial carrier homolog 2 (MTCH2) also plays a role in mitochondrial fusion, but its exact function remains unresolved. MTCH2 overexpression enforces MFN2-independent mitochondrial fusion, proposedly by modulating the phospholipid lysophosphatidic acid (LPA), which is synthesized by glycerol-phosphate acyl transferases (GPATs) in the endoplasmic reticulum (ER) and the OMM. Here we report that MTCH2 requires MFN1 to enforce mitochondrial fusion and that fragmentation caused by loss of MTCH2 can be specifically counterbalanced by overexpression of MFN2 but not MFN1, partially independent of its GTPase activity and mitochondrial localization. Pharmacological inhibition of GPATs (GPATi) or silencing ER-resident GPATs suppresses MFN2's ability to compensate for the loss of MTCH2. Loss of either MTCH2, MFN2, or GPATi does not impair stress-induced mitochondrial fusion, whereas the combined loss of MTCH2 and GPATi or the combined loss of MTCH2 and MFN2 does. Taken together, we unmask two cooperative mechanisms that sustain mitochondrial fusion.


Assuntos
GTP Fosfo-Hidrolases , Lisofosfolipídeos , Mitocôndrias , Mitocôndrias/genética , Mitocôndrias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Mol Biol Rep ; 51(1): 642, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727866

RESUMO

BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.


Assuntos
Vírus da Influenza A , Proteínas de Transporte da Membrana Mitocondrial , Replicação Viral , Humanos , Regulação para Baixo , Células HEK293 , Células HeLa , Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ligação Proteica , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
3.
J Biol Chem ; 295(50): 17009-17026, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33028634

RESUMO

Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3' UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3' UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through-deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.


Assuntos
Regiões 3' não Traduzidas/genética , Códon de Terminação/genética , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Animais , Aorta/citologia , Aorta/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Bovinos , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/genética , Isoformas de Proteínas , Ribossomos/metabolismo
4.
Mol Med ; 27(1): 7, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509092

RESUMO

BACKGROUND: Malignant glioma exerts a metabolic shift from oxidative phosphorylation (OXPHOs) to aerobic glycolysis, with suppressed mitochondrial functions. This phenomenon offers a proliferation advantage to tumor cells and decrease mitochondria-dependent cell death. However, the underlying mechanism for mitochondrial dysfunction in glioma is not well elucidated. MTCH2 is a mitochondrial outer membrane protein that regulates mitochondrial metabolism and related cell death. This study aims to clarify the role of MTCH2 in glioma. METHODS: Bioinformatic analysis from TCGA and CGGA databases were used to investigate the association of MTCH2 with glioma malignancy and clinical significance. The expression of MTCH2 was verified from clinical specimens using real-time PCR and western blots in our cohorts. siRNA-mediated MTCH2 knockdown were used to assess the biological functions of MTCH2 in glioma progression, including cell invasion and temozolomide-induced cell death. Biochemical investigations of mitochondrial and cellular signaling alternations were performed to detect the mechanism by which MTCH2 regulates glioma malignancy. RESULTS: Bioinformatic data from public database and our cohort showed that MTCH2 expression was closely associated with glioma malignancy and poor patient survival. Silencing of MTCH2 expression impaired cell migration/invasion and enhanced temozolomide sensitivity of human glioma cells. Mechanistically, MTCH2 knockdown may increase mitochondrial OXPHOs and thus oxidative damage, decreased migration/invasion pathways, and repressed pro-survival AKT signaling. CONCLUSION: Our work establishes the relationship between MTCH2 expression and glioma malignancy, and provides a potential target for future interventions.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Proteínas de Transporte da Membrana Mitocondrial/genética , Temozolomida/administração & dosagem , Animais , Apoptose , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Silenciamento de Genes , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Fosforilação Oxidativa , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochem Biophys Res Commun ; 526(3): 560-567, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32247615

RESUMO

Mesenchymal stem cells (MSCs) are promising therapeutic cells for preventing apoptosis and abrogating cellular injury. Apoptosis of macrophages and the resulting dysfunction play a critical pathogenic role in acute respiratory distress syndrome (ARDS). Herein, the anti-apoptosis effects of bone marrow MSCs (BMSCs) on RAW264.7 were investigated by transwell assay. Compared to lipopolysaccharide (LPS) stimulation, the treatment of BMSCs decreased the level of cleaved caspase-3 protein, the ratio of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, the level of caspase3-positive cells, and the accumulation of reactive oxygen species (ROS). Moreover, the expression of Bcl-2 and the level of mitochondrial membrane potential (MMP) were increased. Also, it was found that miR-150 disruption of BMSCs remarkably improved the efficiency of the treatment with LPS-stimulated RAW264.7 cells. The study demonstrated that the suppression of miR-150 facilitated the translation of MTCH2 gene and MTCH2-regulated mitochondria transfer from BMSCs to RAW264.7 cells, suggested that miR-150-mediated BMSCs has therapeutic potential for ARDS.


Assuntos
Apoptose , Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Animais , Células Cultivadas , Regulação para Baixo , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biossíntese de Proteínas , Células RAW 264.7 , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/terapia
6.
Biochim Biophys Acta ; 1857(8): 1243-1246, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26827940

RESUMO

The BCL-2 family proteins are major regulators of apoptosis, and one of their major sites of action are the mitochondria. Mitochondria are the cellular hubs for metabolism and indeed selected BCL-2 family proteins also possess roles related to mitochondria metabolism and dynamics. Here we discuss the link between mitochondrial metabolism/dynamics and the fate of stem cells, with an emphasis on the role of the BID-MTCH2 pair in regulating this link. We also discuss the possibility that BCL-2 family proteins act as metabolic sensors/messengers coming on and off of mitochondria to "sample" the cytosol and provide the mitochondria with up-to-date metabolic information. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células-Tronco/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Cálcio/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Células-Tronco/citologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética
7.
J Biol Chem ; 288(30): 22111-27, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23744079

RESUMO

Bid is a Bcl-2 family protein that promotes apoptosis by activating Bax and eliciting mitochondrial outer membrane permeabilization (MOMP). Full-length Bid is cleaved in response to apoptotic stimuli into two fragments, p7 and tBid (p15), that are held together by strong hydrophobic interactions until the complex binds to membranes. The detailed mechanism(s) of fragment separation including tBid binding to membranes and release of the p7 fragment to the cytoplasm remain unclear. Using liposomes or isolated mitochondria with fluorescently labeled proteins at physiological concentrations as in vitro models, we report that the two components of the complex quickly separate upon interaction with a membrane. Once tBid binds to the membrane, it undergoes slow structural rearrangements that result in an equilibrium between two major tBid conformations on the membrane. The conformational change of tBid is a prerequisite for interaction with Bax and is, therefore, a novel step that can be modulated to promote or inhibit MOMP. Using automated high-throughput image analysis in cells, we show that down-regulation of Mtch2 causes a significant delay between tBid and Bax relocalization in cells. We propose that by promoting insertion of tBid via a conformational change at the mitochondrial outer membrane, Mtch2 accelerates tBid-mediated Bax activation and MOMP. Thus the interaction of Mtch2 and tBid is a potential target for therapeutic control of Bid initiated cell death.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/fisiologia , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Caspase 8/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Cinética , Lipossomos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/fisiologia , Modelos Biológicos , Modelos Moleculares , Mutação , Permeabilidade , Ligação Proteica , Conformação Proteica , Fatores de Tempo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética
8.
Drug Des Devel Ther ; 18: 2203-2213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882047

RESUMO

Mitochondrial carrier homolog 2 (MTCH2) is a member of the solute carrier 25 family, located on the outer mitochondrial membrane. MTCH2 was first identified in 2000. The development in MTCH2 research is rapidly increasing. The most well-known role of MTCH2 is linking to the pro-apoptosis BID to facilitate mitochondrial apoptosis. Genetic variants in MTCH2 have been investigated for their association with metabolic and neurodegenerative diseases, however, no intervention or therapeutic suggestions were provided. Recent studies revealed the physiological and pathological function of MTCH2 in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction via regulating mitochondrial apoptosis, metabolic shift between glycolysis and oxidative phosphorylation, mitochondrial fusion/fission, epithelial-mesenchymal transition, etc. This review endeavors to assess a total of 131 published articles to summarise the structure and physiological/pathological role of MTCH2, which has not previously been conducted. This review concludes that MTCH2 plays a crucial role in metabolic diseases, neurodegenerative diseases, cancers, embryonic development and reproduction, and the predominant molecular mechanism is regulation of mitochondrial function. This review gives a comprehensive state of current knowledgement on MTCH2, which will promote the therapeutic research of MTCH2.


Assuntos
Desenvolvimento Embrionário , Doenças Metabólicas , Neoplasias , Doenças Neurodegenerativas , Reprodução , Humanos , Doenças Neurodegenerativas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Metabólicas/metabolismo , Animais , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
9.
Mitochondrion ; 75: 101837, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158152

RESUMO

The mitochondrial carrier system is in charge of small molecule transport between the mitochondria and the cytoplasm as well as being an integral portion of the core mitochondrial function. One member of the mitochondrial carrier family of proteins, mitochondrial carrier homolog 2 (MTCH2), is characterized as a critical mitochondrial outer membrane protein insertase participating in mitochondrial homeostasis. Accumulating evidence demonstrate that MTCH2 is integrally linked to cell death and mitochondrial metabolism, and its genetic alterations cause a variety of disease phenotypes, ranging from obesity, Alzheimer's disease, and tumor. To provide a comprehensive insight into the current understanding of MTCH2, we present a detailed description of the physiopathological functions of MTCH2, ranging from apoptosis, mitochondrial dynamics, and metabolic homeostasis regulation. Moreover, we summarized the impact of MTCH2 in human diseases, and highlighted tumors, to assess the role of MTCH2 mutations or variable expression on pathogenesis and target therapeutic options.


Assuntos
Proteínas de Transporte , Proteínas de Transporte da Membrana Mitocondrial , Humanos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Apoptose/fisiologia , Biologia
10.
Heliyon ; 10(6): e28172, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38560664

RESUMO

The MTCH2 protein is located on the mitochondrial outer membrane and regulates mitochondria-related cell death. This study set out to investigate the role of MTCH2 in the underlying pathophysiological mechanisms of breast cancer (BC). MTCH2 expression levels in BC were analyzed using bioinformatics prior to verification by cell lines in vitro. Experiments of over-expression and siRNA-mediated knockdown of MTCH2 were conducted to assess its biological functions, including its effects on cellular proliferation and cycle progression. Xenografts were utilised for in vivo study and signaling pathway alterations were examined to identify the mechanisms driven by MTCH2 in BC proliferation and cell-cycle regulation. MTCH2 was up-regulated in BC and correlated with patients' overall survival. Over-expression of MTCH2 promoted cellular proliferation and cycle progression, while silencing MTCH2 had the opposite effect. Xenograft experiments were utilised to confirm the in vitro cellular findings and it was identified that the PI3K/Akt signaling pathway was activated by MTCH2 over-expression and suppressed by its silencing. Moreover, the activation of IGF-1R rescued cellular growth and cycle arrest induced by MTCH2-silencing. Overall, this study reveals that expression of MTCH2 in BC is upregulated and potentiates cellular proliferation and cycle progression via the PI3K/Akt pathway.

11.
J Mol Biol ; 435(21): 168274, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714299

RESUMO

During translation, a stop codon on the mRNA signals the ribosomes to terminate the process. In certain mRNAs, the termination fails due to the recoding of the canonical stop codon, and ribosomes continue translation to generate C-terminally extended protein. This process, termed stop codon readthrough (SCR), regulates several cellular functions. SCR is driven by elements/factors that act immediately downstream of the stop codon. Here, we have analysed the process of SCR using a simple mathematical model to investigate how the kinetics of translating ribosomes influences the efficiency of SCR. Surprisingly, the analysis revealed that the rate of translation inversely regulates the efficiency of SCR. We tested this prediction experimentally in mammalian AGO1 and MTCH2 mRNAs. Reduction in translation either globally by harringtonine or locally by rare codons caused an increase in the efficiency of SCR. Thus, our study has revealed a hitherto unknown mode of regulation of SCR.


Assuntos
Códon de Terminação , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Códon de Terminação/genética , Códon de Terminação/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Células HEK293 , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
12.
Environ Pollut ; 277: 116771, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33652185

RESUMO

Silica nanoparticles (SiNPs) could cause reproductive toxicity. The role of miRNAs in reproductive toxicity induced by SiNPs is still ambiguous. The present study was designed to investigate the role of miRNA-450 b-3p. In vivo, 40 male mice were randomly divided into control, and 20 mg/kg SiNPs groups. The mice were administrated by tracheal perfusion for 35 days. In vitro, spermatocyte cells (GC-2spd cells) were divided into 6 groups: 0 µg/mL SiNPs groups, 5 µg/mL SiNPs groups, 5 µg/mL SiNPs + miRNA-450 b-3p mimic transfection group, 5 µg/mL SiNPs + miRNA-450 b-3p mimic negative control group, 5 µg/mL SiNPs + miRNA-450 b-3p inhibitor transfection group, and 5 µg/mL SiNPs + miRNA-450 b-3p inhibitor negative control group. The results showed that SiNPs induced the apoptosis of spermatogenic cells, decreased the quantity and quality of the sperm, reduced the expressions of miR-450 b-3p, and increased the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, and Caspase-3 in the testis. In vitro, the mimic of miRNA-450 b-3p reversed the decrease of viability and the increase of apoptosis rate and significantly antagonized the expression enhancements of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, Caspase-3 induced by SiNPs, while inhibitor of miRNA-450 b-3p further promoted the effects induced by SiNPs. The result suggested that SiNPs could inhibit the miR-450 b-3p expression resulting in activation of the mitochondrial apoptosis signaling pathways by regulating the MTCH2 in the spermatocyte cells and, thus, induce the reproductive toxicity.


Assuntos
MicroRNAs , Nanopartículas , Animais , Apoptose , Masculino , Camundongos , MicroRNAs/genética , Proteínas de Transporte da Membrana Mitocondrial , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Espermatócitos
13.
Neuroscience ; 394: 156-163, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401654

RESUMO

Mitochondrial Carrier Homolog 2 (MTCH2) acts as a receptor for the BH3 interacting-domain death agonist (BID) in the mitochondrial outer membrane. Loss of MTCH2 affects mitochondria energy metabolism and function. MTCH2 forebrain conditional KO (MTCH2 BKO) display a deficit in hippocampus-dependent cognitive functions. Here we study age-related MTCH2 BKO behavioral and electrophysiological aspects of hippocampal functions. MTCH2 BKO exhibit impaired spatial but not motor learning and an impairment in long-term potentiation (LTP) in hippocampal slices. Moreover, MTCH2 BKO express an increase in activated microglia, in addition to a reduction in neuron density in the hippocampus, but do not express amyloid-ß plaques or neurofibrillary tangles. These results highlight the role of mitochondria in the normal hippocampus-dependent memory formation.


Assuntos
Hipocampo/fisiopatologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Prosencéfalo/fisiopatologia , Aprendizagem Espacial , Animais , Feminino , Hipocampo/patologia , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Destreza Motora , Neurônios/patologia , Prosencéfalo/patologia , Teste de Desempenho do Rota-Rod
14.
FEBS Lett ; 590(17): 2852-61, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27468124

RESUMO

The mitochondrial carrier homologue 2 (MTCH2) has been shown to be essential for embryogenesis in mice, and variants in the MTCH2 locus have been linked to obesity in humans. Here, we investigated the importance of mtch2 for embryogenesis and adipocyte formation in zebrafish in vivo. We show that mtch2 is conserved in zebrafish and broadly expressed during embryogenesis. Knock-down of mtch2 results in impaired development of liver and intestine, and is associated with a reduced number of adipocytes and impaired postembryonic growth. The findings indicate an essential role for mtch2 during organ development and adipogenesis in vivo.


Assuntos
Desenvolvimento Embrionário/genética , Fígado/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Peixe-Zebra/genética , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Mucosa Intestinal/metabolismo , Intestinos/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Fígado/crescimento & desenvolvimento , Camundongos , Peixe-Zebra/crescimento & desenvolvimento
15.
Cell Signal ; 26(2): 370-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24269536

RESUMO

Mitochondrial Outer Membrane (MOM) Permeabilization (MOMP) is a critical step in the intrinsic pathway of apoptosis and is regulated by the Bcl-2 family of proteins. In vitro studies using cardiolipin-containing liposomes as a MOM model have suggested that a mitochondria-specific phospholipid, cardiolipin, is of crucial importance in MOMP. However, recently it has been found that the MOM contains much less cardiolipin than it is required for liposome permeabilization. Shortly thereafter, several MOM proteins, such as VDAC2, MTCH2, TOM22 and TOM40, have been identified as the Bax, Bak and tBid receptors that are indispensable in MOMP, but the underlying mechanisms are elusive. Here, proapoptotic signaling mediated by these MOM receptors was explored in terms of 3D-structures of interacting proteins using computational modeling. The formation under apoptotic conditions of the TOM40/TOM22/tBid protein complex possessing a fairly high binding affinity towards Bax is predicted, suggesting the recruitment of Bax to mitochondria by this complex in apoptotic cells. Our simulations predict the displacement of Bax from the TOM40/TOM22/tBid/Bax complex by another Bax in auto-catalytic manner and explain, in terms of structure, the tBid-mediated displacement of Bak from the VDAC2/Bak complex. Computational modeling revealed high-affinity binding of Bid to MTCH2 suggesting both a quasi-constitutive residence of Bid in MTCH2-bound state in healthy cells and its caspase-8-mediated cleavage there under apoptotic conditions. Overall, our results provide structural details for important stages of apoptotic signaling mediated by MOM receptors and enrich its mechanistic understanding.


Assuntos
Apoptose , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transdução de Sinais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Membrana Celular/metabolismo , Bases de Dados de Proteínas , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Canal de Ânion 2 Dependente de Voltagem/química , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/metabolismo
16.
Front Oncol ; 3: 316, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24427739

RESUMO

The molecular pathogenesis of thymomas and thymic carcinomas (TCs) is poorly understood and results of adjuvant therapy are unsatisfactory in case of metastatic disease and tumor recurrence. For these clinical settings, novel therapeutic strategies are urgently needed. Recently, limited sequencing efforts revealed that a broad spectrum of genes that play key roles in various common cancers are rarely affected in thymomas and TCs, suggesting that other oncogenic principles might be important. This made us re-analyze historic expression data obtained in a spectrum of thymomas and thymic squamous cell carcinomas (TSCCs) with a custom-made cDNA microarray. By cluster analysis, different anti-apoptotic signatures were detected in type B3 thymoma and TSCC, including overexpression of BIRC3 in TSCCs. This was confirmed by qRT-PCR in the original and an independent validation set of tumors. In contrast to several other cancer cell lines, the BIRC3-positive TSCC cell line, 1889c showed spontaneous apoptosis after BIRC3 knock-down. Targeting apoptosis genes is worth testing as therapeutic principle in TSCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA