Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 43(1): 41-51, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26187414

RESUMO

The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation. Moreover, we identified a single conserved amino acid (H830) in the RIG-I RNA binding pocket as the mediator of steric exclusion of N1-2'O-methylated RNA. H830A alteration (RIG-I(H830A)) restored binding of N1-2'O-methylated pppRNA. Consequently, endogenous mRNA activated the RIG-I(H830A) mutant but not wild-type RIG-I. Similarly, knockdown of the endogenous N1-2'O-methyltransferase led to considerable RIG-I stimulation in the absence of exogenous stimuli. Studies involving yellow-fever-virus-encoded 2'O-methyltransferase and RIG-I(H830A) revealed that viruses exploit this mechanism to escape RIG-I. Our data reveal a new role for cap N1-2'O-methylation in RIG-I tolerance of self-RNA.


Assuntos
RNA Helicases DEAD-box/genética , Tolerância Imunológica/genética , Processamento Pós-Transcricional do RNA/genética , RNA/genética , Vírus da Febre Amarela/enzimologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Proteína DEAD-box 58 , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Histidina/genética , Humanos , Metilação , Metiltransferases/genética , Camundongos , Estrutura Terciária de Proteína , RNA/química , RNA/imunologia , RNA Viral/imunologia , Receptores Imunológicos , Vírus da Febre Amarela/genética
2.
Mol Biol Rep ; 51(1): 185, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265729

RESUMO

BACKGROUND: Calcium signaling has essential roles in the neurodevelopmental processes and pathophysiology of related disorders for instance autism spectrum disorder (ASD). METHODS AND RESULTS: We compared expression of SLC1A1, SLC25A12, RYR2 and ATP2B2, as well as related long non-coding RNAs, namely LINC01231, lnc-SLC25A12, lnc-MTR-1 and LINC00606 in the peripheral blood of patients with ASD with healthy children. Expression of SLC1A1 was lower in ASD samples compared with control samples (Expression ratio (95% CI) 0.24 (0.08-0.77), adjusted P value = 0.01). Contrary, expression of LINC01231 was higher in cases compared with control samples (Expression ratio (95% CI) 25.52 (4.19-154), adjusted P value = 0.0006) and in male cases compared with healthy males (Expression ratio (95% CI) 28.24 (1.91-418), adjusted P value = 0.0009). RYR2 was significantly over-expressed in ASD children compared with control samples (Expression ratio (95% CI) 4.5 (1.16-17.4), adjusted P value = 0.029). Then, we depicted ROC curves for SLC1A1, LINC01231, RYR2 and lnc-SLC25A12 transcripts showing diagnostic power of 0.68, 0.75, 0.67 and 0.59, respectively. CONCLUSION: To sum up, the current study displays possible role of calcium related genes and lncRNAs in the development of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , RNA Longo não Codificante , Criança , Humanos , Masculino , Sinalização do Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina
3.
Plant J ; 102(1): 53-67, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31733118

RESUMO

Phosphorus (P) is an essential macronutrient required for plant development and production. The mechanisms regulating phosphate (Pi) uptake are well established, but the function of chloroplast Pi homeostasis is poorly understood in Oryza sativa (rice). PHT2;1 is one of the transporters/translocators mediating Pi import into chloroplasts. In this study, to gain insight into the role of OsPHT2;1-mediated stroma Pi, we analyzed OsPHT2;1 function in Pi utilization and photoprotection. Our results showed that OsPHT2;1 was induced by Pi starvation and light exposure. Cell-based assays showed that OsPHT2;1 localized to the chloroplast envelope and functioned as a low-affinity Pi transporter. The ospht2;1 had reduced Pi accumulation, plant growth and photosynthetic rates. Metabolite profiling revealed that 52.6% of the decreased metabolites in ospht2;1 plants were flavonoids, which was further confirmed by 40% lower content of total flavonoids compared with the wild type. As a consequence, ospht2;1 plants were more sensitive to UV-B irradiation. Moreover, the content of phenylalanine, the precursor of flavonoids, was also reduced, and was largely associated with the repressed expression of ADT1/MTR1. Furthermore, the ospht2;1 plants showed decreased grain yields at relatively high levels of UV-B irradiance. In summary, OsPHT2;1 functions as a chloroplast-localized low-affinity Pi transporter that mediates UV tolerance and rice yields at different latitudes.


Assuntos
Cloroplastos/metabolismo , Flavonoides/metabolismo , Oryza/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/metabolismo , Homeostase , Oryza/genética , Oryza/fisiologia , Oryza/efeitos da radiação , Fenilalanina/metabolismo , Proteínas de Transporte de Fosfato/genética , Fotossíntese , Proteínas de Plantas/genética , Amido/metabolismo , Sacarose/metabolismo , Raios Ultravioleta/efeitos adversos
4.
Cell Chem Biol ; 31(1): 86-99, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38091983

RESUMO

Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.


Assuntos
Antivirais , Desenho de Fármacos , Metiltransferases , Capuzes de RNA , RNA Viral , Antivirais/química , Antivirais/farmacologia , Metilação , Metiltransferases/antagonistas & inibidores , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Humanos
5.
Dev Cell ; 58(4): 278-288.e5, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36801006

RESUMO

Hair-like structures are shared by most living organisms. The hairs on plant surfaces, commonly referred to as trichomes, form diverse types to sense and protect against various stresses. However, it is unclear how trichomes differentiate into highly variable forms. Here, we show that a homeodomain leucine zipper (HD-ZIP) transcription factor named Woolly controls the fates of distinct trichomes in tomato via a dosage-dependent mechanism. The autocatalytic reinforcement of Woolly is counteracted by an autoregulatory negative feedback loop, creating a circuit with a high or low Woolly level. This biases the transcriptional activation of separate antagonistic cascades that lead to different trichome types. Our results identify the developmental switch of trichome formation and provide mechanistic insights into the progressive fate specification in plants, as well as a path to enhancing plant stress resistance and the production of beneficial chemicals.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/genética , Tricomas/metabolismo , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA