Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell ; 181(3): 702-715.e20, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32315619

RESUMO

Protein phosphatase 2A (PP2A) enzymes can suppress tumors, but they are often inactivated in human cancers overexpressing inhibitory proteins. Here, we identify a class of small-molecule iHAPs (improved heterocyclic activators of PP2A) that kill leukemia cells by allosterically assembling a specific heterotrimeric PP2A holoenzyme consisting of PPP2R1A (scaffold), PPP2R5E (B56ε, regulatory), and PPP2CA (catalytic) subunits. One compound, iHAP1, activates this complex but does not inhibit dopamine receptor D2, a mediator of neurologic toxicity induced by perphenazine and related neuroleptics. The PP2A complex activated by iHAP1 dephosphorylates the MYBL2 transcription factor on Ser241, causing irreversible arrest of leukemia and other cancer cells in prometaphase. In contrast, SMAPs, a separate class of compounds, activate PP2A holoenzymes containing a different regulatory subunit, do not dephosphorylate MYBL2, and arrest tumor cells in G1 phase. Our findings demonstrate that small molecules can serve as allosteric switches to activate distinct PP2A complexes with unique substrates.


Assuntos
Proteína Fosfatase 2/metabolismo , Apoptose , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ativadores de Enzimas/metabolismo , Fase G1 , Humanos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Fenotiazinas/farmacologia , Fosforilação , Proteína Fosfatase 2/fisiologia , Subunidades Proteicas/metabolismo , Transativadores/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
2.
EMBO J ; 43(10): 1990-2014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605226

RESUMO

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.


Assuntos
Células-Tronco Hematopoéticas , Metiltransferases , Proteínas de Ligação a RNA , Peixe-Zebra , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Ciclo Celular , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Desenvolvimento Embrionário/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proliferação de Células
3.
BMC Med ; 21(1): 68, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810084

RESUMO

BACKGROUND: Castration-resistant prostate cancer often metastasizes to the bone, and such bone metastases eventually become resistant to available therapies, leading to the death of patients. Enriched in the bone, TGF-ß plays a pivotal role in bone metastasis development. However, directly targeting TGF-ß or its receptors has been challenging for the treatment of bone metastasis. We previously found that TGF-ß induces and then depends on the acetylation of transcription factor KLF5 at K369 to regulate multiple biological processes, including the induction of EMT, cellular invasiveness, and bone metastasis. Acetylated KLF5 (Ac-KLF5) and its downstream effectors are thus potential therapeutic targets for treating TGF-ß-induced bone metastasis in prostate cancer. METHODS: A spheroid invasion assay was applied to prostate cancer cells expressing KLF5K369Q, which mimics Ac-KLF5, to screen 1987 FDA-approved drugs for invasion suppression. Luciferase- and KLF5K369Q-expressing cells were injected into nude mice via the tail artery to model bone metastasis. Bioluminescence imaging, micro-CT), and histological analyses were applied to monitor and evaluate bone metastases. RNA-sequencing, bioinformatic, and biochemical analyses were used to understand nitazoxanide (NTZ)-regulated genes, signaling pathways, and the underlying mechanisms. The binding of NTZ to KLF5 proteins was evaluated using fluorescence titration, high-performance liquid chromatography (HPLC), and circular dichroism (CD) analysis. RESULTS: NTZ, an anthelmintic agent, was identified as a potent invasion inhibitor in the screening and validation assays. In KLF5K369Q-induced bone metastasis, NTZ exerted a potent inhibitory effect in preventive and therapeutic modes. NTZ also inhibited osteoclast differentiation, a cellular process responsible for bone metastasis induced by KLF5K369Q. NTZ attenuated the function of KLF5K369Q in 127 genes' upregulation and 114 genes' downregulation. Some genes' expression changes were significantly associated with worse overall survival in patients with prostate cancer. One such change was the upregulation of MYBL2, which functionally promotes bone metastasis in prostate cancer. Additional analyses demonstrated that NTZ bound to the KLF5 protein, KLF5K369Q bound to the promoter of MYBL2 to activate its transcription, and NTZ attenuated the binding of KLF5K369Q to the MYBL2 promoter. CONCLUSIONS: NTZ is a potential therapeutic agent for bone metastasis induced by the TGF-ß/Ac-KLF5 signaling axis in prostate cancer and likely other cancers.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Camundongos Nus , Neoplasias da Próstata/genética , Fatores de Transcrição , Fator de Crescimento Transformador beta , Linhagem Celular Tumoral , Fatores de Transcrição Kruppel-Like/genética
4.
Cancer Cell Int ; 23(1): 248, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865750

RESUMO

BACKGROUND: An immunosuppressive tumor microenvironment in ovarian cancer facilitates tumor progression and resistance to immunotherapy. The function of MYB Proto-Oncogene Like 2 (MYBL2) in the tumor microenvironment remains largely unexplored. METHODS: A syngeneic intraovarian mouse model, flow cytometry analysis, and immunohistochemistry were used to explore the biological function of MYBL2 in tumor progression and immune escape. Molecular and biochemical strategies-namely RNA-sequencing, western blotting, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay, multiplex immunofluorescence, chromatic immunoprecipitation assay (CHIP) and luciferase assay-were used to reveal the mechanisms of MYBL2 in the OVC microenvironment. RESULTS: We found tumor derived MYBL2 indicated poor prognosis and selectively correlated with tumor associated macrophages (TAMs) in ovarian cancer. Mechanically, C-C motif chemokine ligand 2 (CCL2) transcriptionally activated by MYBL2 induced TAMs recruitment and M2-like polarization in vitro. Using a syngeneic intraovarian mouse model, we identified MYBL2 promoted tumor malignancyand increased tumor-infiltrating immunosuppressive macrophages. Cyclin-dependent kinase 2 (CDK2) was a known upstream kinase to phosphorylate MYBL2 and promote its transcriptional function. The upstream inhibitor of CDK2, CVT-313, reprogrammed the tumor microenvironment and reduced anti-PD-1 resistance. CONCLUSIONS: The MYBL2/CCL2 axis contributing to TAMs recruitment and M2-like polarization is crucial to immune evasion and anti-PD-1 resistance in ovarian cancer, which is a potential target to enhance the efficacy of immunotherapy.

5.
Biochem Biophys Res Commun ; 622: 170-176, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35932528

RESUMO

Gene expression is tightly regulated by transcription factors (TFs) which play an important role in development and tumorigenesis. Abnormal transcriptional regulation leads to oncogene activation or tumor suppressor inhibition, thus promoting the occurrence and progression of tumors. MYBL2 (alias B-Myb), a ubiquitously expressed transcription factor of the MYB family, is a nuclear protein involved in cell cycle progression and overexpressed and associated with poor patient outcomes in numerous cancer entities. However, the further effectors of the MYBL2 downstream transcriptional network mediating its cancer-promoting properties remain not well elaborated. Here, we systemic investigated the global MYBL2 targets base on ChIP-seq data from melanoma, breast cancer, lung carcinoma, and liver cancer. Functional enrichment and further validation of MYBL2 downstream binding targets on melanoma cells demonstrated that genes in the Ras and ErbB signaling pathways were regulated by MYBL2. Moreover, when integrating breast cancer, lung carcinoma and liver cancer data, we identified HEB, ZEB1 and ASCL1 colocalized on Ras/ErbB signaling gene locus with MYBL2, indicating the regulatory complex on activating oncogenic expression. Taken together, this study provides a reference for a better understanding of the MYBL2 regulatory mechanism in tumorigenesis.


Assuntos
Neoplasias da Mama , Carcinoma , Neoplasias Hepáticas , Neoplasias Pulmonares , Melanoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Carcinogênese/genética , Carcinoma/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Melanoma/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
6.
BMC Cancer ; 22(1): 1290, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494680

RESUMO

BACKGROUND: Metabolic reprogramming is a hallmark of cancer, alteration of nucleotide metabolism of hepatocellular carcinoma (HCC) is not well-understood. MYBL2 regulates cell cycle progression and hepatocarcinogenesis, its role in metabolic regulation remains elusive. PATIENTS AND METHODS: Copy number, mRNA and protein level of MYBL2 and IMPDH1 were analyzed in HCC, and correlated with patient survival. Chromatin Immunoprecipitation sequencing (Chip-seq) and Chromatin Immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) were used to explore the relationship between MYBL2 and IMPDH1. Metabolomics were used to analyze how MYBL2 affected purine metabolism. The regulating effect of MYBL2 in HCC was further validated in vivo using xenograft models. RESULTS: The Results showed that copy-number alterations of MYBL2 occur in about 10% of human HCC. Expression of MYBL2, IMPDH1, or combination of both were significantly upregulated and associated with poor prognosis in HCC. Correlation, ChIP-seq and ChIP-qPCR analysis revealed that MYBL2 activates transcription of IMPDH1, while knock-out of MYBL2 retarded IMPDH1 expression and inhibited proliferation of HCC cells. Metabolomic analysis post knocking-out of MYBL2 demonstrated that it was essential in de novo purine synthesis, especially guanine nucleotides. In vivo analysis using xenograft tumors also revealed MYBL2 regulated purine synthesis by regulating IMPDH1, and thus, influencing tumor progression. CONCLUSION: MYBL2 is a key regulator of purine synthesis and promotes HCC progression by transcriptionally activating IMPDH1, it could be a potential candidate for targeted therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Progressão da Doença , Purinas , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Transativadores/metabolismo , Proteínas de Ciclo Celular/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233166

RESUMO

Anthocyanins are well-known antioxidants that are beneficial for plants and consumers. Dihydroflavonol-4-reductase (DFR) is a key gene of anthocyanin biosynthesis, controlled by multiple transcription factors. Its expression can be enhanced by mutations in the negative regulator of anthocyanin biosynthesis myeloblastosis family transcription factor-like 2 (MYBL2). The expression profiles of the DFR gene were examined in 43 purple and green varieties of Brassica oleracea L., Brassica napus L., Brassica juncea L., and Brassica rapa L. MYBL2 gene expression was significantly reduced in purple varieties of B. oleracea, and green varieties of B. juncea. The MYBL2 gene sequences were screened for mutations that can affect pigmentation. Expression of the DFR gene was cultivar-specific, but in general it correlated with anthocyanin content and was higher in purple plants. Two single nucleotide polymorphysms (SNPs) were found at the beginning of the DNA-binding domain of MYBL2 gene in all purple varieties of B. oleracea. This mutation, leading to an amino acid substitution and the formation of a mononucleotide repeat (A)8, significantly affects RNA structure. No other noteworthy mutations were found in the MYBL2 gene in green varieties of B. oleracea and other studied species. These results bring new insights into the regulation of anthocyanin biosynthesis in genus Brassica and provide opportunities for generation of new purple varieties with precise mutations introduced via genetic engineering and CRISPR/Cas.


Assuntos
Antocianinas , Brassica , Antocianinas/metabolismo , Brassica/genética , Brassica/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Nucleotídeos/metabolismo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo
8.
J Cell Mol Med ; 25(10): 4744-4752, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33787061

RESUMO

Growing lncRNAs have been noted to involve in the initiation and development of several tumours including tongue squamous cell carcinomas (TSCCs). However, the biological role and mechanism of lncRNA RPSAP52 were not well-explained. We indicated that RPSAP52 was higher in TSCC samples compared with that in control samples. The higher expression of RPSAP52 was positively correlated with higher T stage and TNM stage. Ectopic expression of RPSAP52 induced TSCC cell growth and cycle and induced cytokine secretion including IFN-γ, IL-1ß and IL-6, IL-8, IL-10 and TGF-ß. We found that the overexpression of RPSAP52 suppressed miR-423-5p expression in SCC-4 cell. miR-423-5p was lower in TSCC samples compared with that in control samples, and miR-423-5p level was negatively correlated with higher T stage and TNM stage. Pearson's correlation indicated that miR-423-5p was negatively associated with that of RPSAP52 in TSCC tissues. Furthermore, MYBL2 was one direct gene of miR-423-5p and elevated expression of miR-423-5p suppressed MYBL2 expression and ectopic expression of RPSAP52 increased MYBL2 expression in SCC-4 cell. Finally, we illustrated that RPSAP52 overexpression promoted TSCC cell growth and cycle and induced cytokine secretion including IFN-γ, IL-1ß and IL-6, IL-8, IL-10 and TGF-ß via modulating MYBL2. These data provided new insight into RPSAP52, which may be one potential treatment target for TSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias da Língua/patologia , Transativadores/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Proliferação de Células , Humanos , Prognóstico , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Transativadores/genética , Células Tumorais Cultivadas
9.
BMC Plant Biol ; 21(1): 242, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049482

RESUMO

BACKGROUND: The regulation of anthocyanin biosynthesis by various factors including sugars, light and abiotic stresses is mediated by numerous regulatory factors acting at the transcriptional level. Here experimental evidence was provided in order to demonstrate that the nuclear GARP transcription factor AtGLK1 plays an important role in regulating sucrose-induced anthocyanin biosynthesis in Arabidopsis. RESULTS: The results obtained using real-time quantitative PCR and GUS staining assays revealed that AtGLK1 was mainly expressed in the green tissues of Arabidopsis seedlings and could be induced by sucrose. The loss-of-function glk1 glk2 double mutant has lower anthocyanin levels than the glk2 single mutant, although it has been determined that loss of AtGLK1 alone does not affect anthocyanin accumulation. Overexpression of AtGLK1 enhances the accumulation of anthocyanin in transgenic Arabidopsis seedlings accompanied by increased expression of anthocyanin biosynthetic and regulatory genes. Moreover, we found that AtGLK1 also participates in plastid-signaling mediated anthocyanin accumulations. Genetic, physiological, and molecular biological approaches demonstrated that AtGLK1 acts upstream of MYBL2, which is a key negative regulator of anthocyanin biosynthesis, to genetically regulate sucrose-induced anthocyanin biosynthesis. CONCLUSION: Our results indicated that AtGLK1 positively regulates sucrose-induced anthocyanin biosynthesis in Arabidopsis via MYBL2.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/fisiologia , Transdução de Sinais , Sacarose/metabolismo , Fatores de Transcrição/genética
10.
J Cell Mol Med ; 24(17): 10075-10087, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32696617

RESUMO

Glioblastoma multiforme (GBM) is a very serious mortality of central nervous system cancer. The microarray data from GSE2223, GSE4058, GSE4290, GSE13276, GSE68848 and GSE70231 (389 GBM tumour and 67 normal tissues) and the RNA-seq data from TCGA-GBM dataset (169 GBM and five normal samples) were chosen to find differentially expressed genes (DEGs). RRA (Robust rank aggregation) method was used to integrate seven datasets and calculate 133 DEGs (82 up-regulated and 51 down-regulated genes). Subsequently, through the PPI (protein-protein interaction) network and MCODE/ cytoHubba methods, we finally filtered out ten hub genes, including FOXM1, CDK4, TOP2A, RRM2, MYBL2, MCM2, CDC20, CCNB2, MYC and EZH2, from the whole network. Functional enrichment analyses of DEGs were conducted to show that these hub genes were enriched in various cancer-related functions and pathways significantly. We also selected CCNB2, CDC20 and MYBL2 as core biomarkers, and further validated them in CGGA, HPA and CCLE database, suggesting that these three core hub genes may be involved in the origin of GBM. All these potential biomarkers for GBM might be helpful for illustrating the important role of molecular mechanisms of tumorigenesis in the diagnosis, prognosis and targeted therapy of GBM cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Glioblastoma/genética , Biomarcadores Tumorais/genética , Carcinogênese/genética , Biologia Computacional/métodos , Humanos , Prognóstico , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética
11.
Int J Cancer ; 146(8): 2182-2193, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31904872

RESUMO

Most genome-wide association studies (GWASs) identify genetic variants for breast cancer occurrence. In contrast, few are for recurrence and mortality. We conducted a GWAS on breast cancer survival after diagnosis in estrogen receptor-positive patients, including 953 Taiwanese patients with 159 events. Through Cox proportional hazard models estimation, we identified 24 risk SNPs with p < 1 × 10-5 . Based on imputation and integrated analysis, one SNP, rs1024176 (located in 1q24.2, p = 2.43 × 10-5 ) was found to be a functional variant associated with breast cancer survival and XCL1 gene expression. A series of experimental approaches, including cell-based analyses and CRISPR/Cas9 genome-editing system, were then used and identified the transcription factor MYBL2 was able to discriminately bind to the A allele of rs1024176, the protective variant for breast cancer survival, which promoted XCL1 expression, but not to the G allele of rs1024176. The chemokine XCL1 attracts type 1 dendritic cells (DC1s) to the tumor microenvironment. In breast cancer tissues, we applied a two-step Mendelian randomization analysis, using expression quantitative trait loci as instrumental variables, to confirm higher XCL1 expression was correlated with higher DC1 signatures and favorable disease progression, through the causal effect of rs1024176-A allele. Our study supports the genetic effect on preventing breast cancer survival through XCL1-induced DC1 recruitment in tumor microenvironment.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Quimiocinas C/genética , Quimiocinas C/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Quimiocinas C/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Locos de Características Quantitativas , Transativadores/genética , Transativadores/imunologia , Adulto Jovem
12.
Prostate ; 80(9): 674-686, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294305

RESUMO

BACKGROUND: Castrate-resistant prostate cancer (CRPC) is an aggressive and lethal disease. The pathogenesis of CRPC is not fully understood and novel therapeutic targets need to be identified to improve the patients' prognosis. MicroRNA-30a (miR-30a) has been demonstrated to be a tumor suppressor in many types of solid malignancies. However, its role in androgen-independent (AI) growth of prostate cancer (PCa) received limited attention as yet. METHODS: The clinical association of miR-30a and its potential targets with AI growth was characterized by bioinformatics analyses. Regulation of cell proliferation and colony formation rates by miR-30a were tested using PCa cell models. Xenograft models were used to measure the regulation of prostate tumor growth by miR-30a. The real-time quantitative polymerase chain reaction was used to validate whether miR-30a and its targets regulate cell cycle control genes and androgen receptor (AR)-dependent transcription. Bioinformatics tools, Western blot, and luciferase reporter assays were utilized to identify miR-30a targets. RESULTS: Bioinformatic analysis showed that low expression of miR-30a is associated with castration resistance of PCa patients and poor outcomes. Transfection of miR-30a mimics inhibited the AI growth of PCa cells in vitro and in vivo. Upregulation of miR-30a in 22RV1 cells altered the expression of cell cycle control genes and AR-mediated transcription, while downregulation of miR-30a in LNCaP cells had the opposite effects to AR-mediated transcription. MYBL2, FOXD1, and SOX4 were identified as miR-30a targets. Downregulation of MYBL2, FOXD1, and SOX4 affected the expression of cell cycle control genes and AR-mediated transcription and suppressed the AI growth of 22RV1 cells. CONCLUSIONS: Our results suggest that miR-30a inhibits AI growth of PCa by targeting MYBL2, FOXD1, and SOX4. They provide novel insights into developing new treatment strategies for CRPC.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição SOXC/metabolismo , Transativadores/metabolismo , Antagonistas de Androgênios/metabolismo , Androgênios/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/genética , Prognóstico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição SOXC/genética , Transativadores/genética , Regulação para Cima
13.
Biochem Biophys Res Commun ; 525(3): 581-588, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32115147

RESUMO

Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA LINC01139 (LINC01139) in the progression of hepatocellular carcinoma (HCC). We found that LINC01139 was over-expressed in HCC specimens and cell lines, and its upregulation was observed to be associated with advanced TNM stage, lymph node metastasis and poor clinical prognosis of HCC patients. Multivariate analyses confirmed that LINC01139 expression was an independent poor prognostic factor for HCC patients. Functionally, the knockdown of LINC01139 suppressed cell proliferation, clone formation and metastasis of HCC cells. Moreover, luciferase assays and rescue experiments revealed that LINC01139/miR-30/MYBL2 established the ceRNA network involved in the modulation of cell proliferation and metastasis of HCC cells. Overall, LINC01139 may exhibit an oncogenic function in HCC via acting as a sponge for miR-30 to upregulate MYBL2, and may serve as a potential therapeutic target and a prognostic biomarker for HCC patients.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Progressão da Doença , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transativadores/genética , Regulação para Cima/genética , Sequência de Bases , Ligação Competitiva , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Invasividade Neoplásica , Metástase Neoplásica , Prognóstico , RNA Longo não Codificante/genética , Transativadores/metabolismo
14.
Mol Cell Biochem ; 468(1-2): 185-193, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32200471

RESUMO

MYB Proto-Oncogene Like 2 (MYBL2) is a highly conserved member of the Myb family of transcription factors and plays a critical role in regulating cell proliferation and survival. Here we show that overexpression of MYBL2 is frequently observed in lung adenocarcinoma (LUAD) and significantly correlates with advanced stage and poor patient survival. Knockdown of MYBL2 induced apoptosis in lung cancer cells and resulted in significant inhibition of cell proliferation, migration, and invasion. Notably, we identified Non-SMC Condensin I Complex Subunit H (NCAPH) gene as a direct target of MYBL2. NCAPH expression is highly correlated with that of MYBL2 in LUAD cases and is tightly affected by MYBL2 knockdown or overexpression in vitro. Chromatin immunoprecipitation (ChIP) assays also showed that MYBL2 directly binds to the transcription start site (TSS) of NCAPH. Moreover, we provided evidence that NCAPH functions as an oncogene in lung cancer and overexpression of NCAPH could partially rescue cell death and migration blockage induced by MYBL2 knockdown. Together, these results suggest that overexpression of MYBL2 promotes proliferation and migration of lung cancer cells via upregulating NCAPH, establishing their roles as novel prognostic biomarkers as well as potential therapeutic targets for the disease.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Células A549 , Apoptose/genética , Biomarcadores Tumorais/genética , Carcinógenos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/genética , Imunoprecipitação da Cromatina , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Proteínas Nucleares/genética , Ligação Proteica , Proto-Oncogene Mas , Transativadores/genética , Ativação Transcricional/genética , Regulação para Cima
15.
J Cell Physiol ; 234(12): 22034-22043, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31074036

RESUMO

MicroRNA (miR) plays an integral role in cardiovascular diseases. M-iR-423-5p is aberrantly expressed in patients with myocardial infarction and heart failure. The aim of the present study was to study the roles and mechanisms of miR-423-5p in hypoxia/reoxygenation (H/R) mediated cardiomyocytes injury. H9C2 cells were transfected with negative control, miR-423-5p mimic, and inhibitor for 48 hr, followed by exposed to H/R condition. Cell apoptosis rate, caspase 3/7 activities, Bax and cleaved-caspase 3 (c-caspase 3) protein levels were assayed by flow cytometry, Caspase-Glo 3/7 Assay kit, western blot analysis, respectively. Furthermore, the mitochondrial membrane potential, adenosine triphosphate (ATP) content, reactive oxygen species (ROS) production, and Drp1 expression were also investigated. Furthermore, the dual-luciferase reporter assay was used to evaluate the relationship between miR-423-5p and Myb-related protein B (MYBL2). The roles of miR-423-5p in wnt/ß-catenin were assessed by western blot analysis. The results revealed that H/R triggered miR-423-5p expression. Overexpression of miR-423-5p promoted cardiomyocyte apoptosis, enhanced the activities of caspase 3/7, upregulated the expression of Bax and c-caspase 3. miR-423-5p upregulation caused the loss of mitochondrial membrane potential and the reduction of ATP content, the augment of ROS production and Drp1 expression. However, the opposite trends were observed upon suppression of miR-423-5p. In addition, miR-423-5p could target the 3' untranslated region of MYBL2. miR-423-5p depletion led to the activation of the wnt/ß-catenin signaling pathway via targeting MYBL2. Knockdown of MYBL2 was obviously reversed the roles of miR-423-5p in apoptosis and mitochondrial dysfunction. Taken together, miR-423-5p suppression reduced H/R-induced cardiomyocytes injury through activation of the wnt/ß-catenin signaling pathway via targeting MYBL2 in cardiomyocytes.


Assuntos
MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Apoptose/fisiologia , Linhagem Celular , MicroRNAs/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Ratos
16.
Cell Physiol Biochem ; 41(5): 2117-2131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28427077

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is an aggressive and highly lethal biliary tract malignancy, with extremely poor prognosis. In the present study, we analyzed the potential involvement of MYBL2, a member of the Myb transcription factor family, in the carcinogenesis of human GBC. METHODS: MYBL2 expression levels were measured in GBC and cholecystitis tissue specimens using quantitative real-time PCR (qRT-PCR) and immunohistochemical (IHC) assays. The effects of MYBL2 on cell proliferation and DNA synthesis were evaluated using Cell Counting Kit-8 assay (CCK-8), colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) retention assay, flow cytometry analysis, western blot, and a xenograft model of GBC cells in nude mice. RESULTS: MYBL2 expression was increased in GBC tissues and associated with histological differentiation, tumour invasion, clinical stage and unfavourable overall survival in GBC patients. The downregulation of MYBL2 expression resulted in the inhibition of GBC cell proliferation, and DNA replication in vitro, and the growth of xenografted tumours in nude mice. Conversely, MYBL2 overexpression resulted in the opposite effects. CONCLUSIONS: MYBL2 overexpression promotes GBC cell proliferation through the regulation of the cell cycle at the S and G2/M phase transitions. Thus, MYBL2 could serve as a potential prognostic and therapeutic biomarker in GBC patients.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Ciclo Celular/biossíntese , Proliferação de Células , Neoplasias da Vesícula Biliar , Proteínas de Neoplasias/biossíntese , Transativadores/biossíntese , Idoso , Idoso de 80 Anos ou mais , Animais , Intervalo Livre de Doença , Feminino , Seguimentos , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/mortalidade , Neoplasias da Vesícula Biliar/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Taxa de Sobrevida
17.
Histopathology ; 71(5): 823-834, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28594149

RESUMO

AIMS: Adenoid cystic carcinoma (AdCC) is one of the most common salivary gland malignancies and the long-term prognosis is poor. In this study, we examined alterations of AdCC-associated genes, MYB, MYBL1, MYBL2 and NFIB, and their target molecules, including MYC. The results were correlated to clinicopathological profile of the patients. METHODS AND RESULTS: Using paraffin tumour sections from 33 cases of salivary gland AdCC, we performed a detailed fluorescence in-situ hybridization (FISH) analysis for gene splits and fusions of MYB, MYBL1, MYBL2 and NFIB. We found that 29 of 33 (88%) AdCC cases showed gene splits in either MYB, MYBL1 or NFIB. None of the cases showed an MYBL2 gene alteration. AdCCs were divided genetically into six gene groups, MYB-NFIB (n = 16), MYB-X (n = 4), MYBL1-NFIB (n = 2), MYBL1-X (n = 1), NFIB-X (n = 6) and gene-split-negative (n = 4). AdCC patients showing the MYB or MYBL1 gene splits were associated with microscopically positive surgical margins (P = 0.0148) and overexpression of MYC (P = 0.0164). MYC expression was detected in both ductal and myoepithelial tumour cells, and MYC overexpression was associated with shorter disease-free survival of the patients (P = 0.0268). CONCLUSIONS: The present study suggests that (1) nearly 90% of AdCCs may have gene alterations of either MYB, MYBL1 or NFIB, suggesting the diagnostic utility of the FISH assay, (2) MYB or MYBL1 gene splits may be associated with local aggressiveness of the tumours and overexpression of MYC, which is one of the oncogenic MYB/MYBL1 targets and (3) MYC overexpression may be a risk factor for disease-free survival in AdCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Adenoide Cístico/genética , Neoplasias das Glândulas Salivares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Carcinoma Adenoide Cístico/mortalidade , Carcinoma Adenoide Cístico/patologia , Proteínas de Ciclo Celular/genética , Feminino , Genes myb , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição NFI/genética , Proteínas Oncogênicas v-myb/genética , Modelos de Riscos Proporcionais , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias das Glândulas Salivares/mortalidade , Neoplasias das Glândulas Salivares/patologia , Transativadores/genética , Translocação Genética
18.
Plant J ; 84(6): 1192-205, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26576746

RESUMO

Photomorphogenesis is an essential program in plant development. This process is effected by the balanced cooperation of many factors under light and dark conditions. In a previous study, we showed that MYB hypocotyl elongation-related (MYBH) is involved in cell elongation. To expand our understanding of MYBH function, we performed a yeast two-hybrid assay and identified an MYB-like Domain transcription factor (MYBD). In this study, we investigated the function of MYBD, which is an MYBH homolog involved in anthocyanin accumulation. MYBD expression increased in response to light or cytokinin, and MYBD enhanced anthocyanin biosynthesis via repression of MYBL2, which encodes a transcription factor that has a negative effect on this process. In addition, MYBD binding in vivo to the MYBL2 promoter and the lower level of histone H3K9 acetylation at the upstream region of MYBL2 in MYBD over-expressing plants in comparison with wild-type plants imply that MYBD represses MYBL2 expression via an epigenetic mechanism. HY5 directly binds to the MYBD promoter, which indicates that MYBD acts on HY5-downstream in light- or cytokinin-triggered signaling pathways, leading to anthocyanin accumulation. Our results suggest that, although MYBD and MYBH are homologs, they act in opposite ways during plant photomorphogenesis, and these functions should be examined in further studies.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Citocininas , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Luz , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Fatores de Transcrição/genética
19.
J Pathol ; 232(5): 522-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24374933

RESUMO

Mutations in the TP53 tumour suppressor gene occur in half of all human cancers, indicating its critical importance in inhibiting cancer development. Despite extensive studies, the mechanisms by which mutant p53 enhances tumour progression remain only partially understood. Here, using data from the Cancer Genome Atlas (TCGA), genomic and transcriptomic analyses were performed on 2256 tumours from 10 human cancer types. We show that tumours with TP53 mutations have altered gene expression profiles compared to tumours retaining two wild-type TP53 alleles. Among 113 known p53-up-regulated target genes identified from cell culture assays, 10 were consistently up-regulated in at least eight of 10 cancer types that retain both copies of wild-type TP53. RPS27L, CDKN1A (p21(CIP1)) and ZMAT3 were significantly up-regulated in all 10 cancer types retaining wild-type TP53. Using this p53-based expression analysis as a discovery tool, we used cell-based assays to identify five novel p53 target genes from genes consistently up-regulated in wild-type p53 cancers. Global gene expression analyses revealed that cell cycle regulatory genes and transcription factors E2F1, MYBL2 and FOXM1 were disproportionately up-regulated in many TP53 mutant cancer types. Finally, > 93% of tumours with a TP53 mutation exhibited greatly reduced wild-type p53 messenger expression, due to loss of heterozygosity or copy neutral loss of heterozygosity, supporting the concept of p53 as a recessive tumour suppressor. The data indicate that tumours with wild-type TP53 retain some aspects of p53-mediated growth inhibitory signalling through activation of p53 target genes and suppression of cell cycle regulatory genes.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Mutação , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Perda de Heterozigosidade , Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
Heliyon ; 10(6): e27772, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510035

RESUMO

Multiple cancers have been associated with MYB-related protein B (MYBL2), its involvement in clear cell renal cell carcinoma (ccRCC) has yet to be demonstrated. Our study revealed a significant upregulation of MYBL2 in ccRCC tissues, correlating with clinicopathological features and patient prognosis. Increased MYBL2 expression promoted cell proliferation and suppressed apoptosis. RNA-seq analysis unveiled a reduction in smoothened (SMO) expression upon MYBL2 silencing. However, luciferase and chromatin immunoprecipitation (ChIP) assays demonstrated MYBL2's positive regulation of SMO expression by directly targeting the SMO promoter. Reintroduction of SMO expression in MYBL2-knocked down cells partially restored cell proliferation and mitigated apoptosis inhibition. Overall, these results indicate that MYBL2 facilitates ccRCC progression by enhancing SMO expression, suggesting its potential as an intriguing drug target for ccRCC therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA