Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884729

RESUMO

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Assuntos
Comunicação Interventricular , Humanos , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Comunicação Interventricular/genética , Mutação , Fatores de Transcrição/genética
2.
Mol Genet Genomics ; 298(6): 1289-1299, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37498360

RESUMO

The objective of this work was to identify genetic variants in Mexican patients diagnosed with hypertrophic cardiomyopathy (HCM). According to world literature, the genes mainly involved are MHY7 and MYBPC3, although variants have been found in more than 50 genes related to heart disease and sudden death, and to our knowledge there are no studies in the Mexican population. These variants are reported and classified in the ClinVar (PubMed) database and only some of them are recognized in the Online Mendelian Information in Men (OMIM). The present study included 37 patients, with 14 sporadic cases and 6 familial cases, with a total of 21 index cases. Next-generation sequencing was performed on a predesigned panel of 168 genes associated with heart disease and sudden death. The sequencing analysis revealed twelve (57%) pathogenic or probably pathogenic variants, 9 of them were familial cases, managing to identify pathogenic variants in relatives without symptoms of the disease. At the molecular level, nine of the 12 variants (75%) were single nucleotide changes, 2 (17%) deletions, and 1 (8%) splice site alteration. The genes involved were MYH7 (25%), MYBPC3 (25%) and ACADVL, KCNE1, TNNI3, TPM1, SLC22A5, TNNT2 (8%). In conclusion; we found five variants that were not previously reported in public databases. It is important to follow up on the reclassification of variants, especially those of uncertain significance in patients with symptoms of the condition. All patients included in the study and their relatives received family genetic counseling.


Assuntos
Cardiomiopatia Hipertrófica , Cardiopatias , Masculino , Humanos , Cardiomiopatia Hipertrófica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Morte Súbita , Mutação , Membro 5 da Família 22 de Carreadores de Soluto/genética
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835444

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by pathogenic MYBPC3 variants, and a significant cause of sudden cardiac death. Severity is highly variable, with incomplete penetrance among genotype-positive family members. Previous studies demonstrated metabolic changes in HCM. We aimed to identify metabolite profiles associated with disease severity in carriers of MYBPC3 founder variants using direct-infusion high-resolution mass spectrometry in plasma of 30 carriers with a severe phenotype (maximum wall thickness ≥20 mm, septal reduction therapy, congestive heart failure, left ventricular ejection fraction <50%, or malignant ventricular arrhythmia) and 30 age- and sex-matched carriers with no or a mild phenotype. Of the top 25 mass spectrometry peaks selected by sparse partial least squares discriminant analysis, XGBoost gradient boosted trees, and Lasso logistic regression (42 total), 36 associated with severe HCM at a p < 0.05, 20 at p < 0.01, and 3 at p < 0.001. These peaks could be clustered to several metabolic pathways, including acylcarnitine, histidine, lysine, purine and steroid hormone metabolism, and proteolysis. In conclusion, this exploratory case-control study identified metabolites associated with severe phenotypes in MYBPC3 founder variant carriers. Future studies should assess whether these biomarkers contribute to HCM pathogenesis and evaluate their contribution to risk stratification.


Assuntos
Cardiomiopatia Hipertrófica , Efeito Fundador , Miosinas , Humanos , Biomarcadores , Cardiomiopatia Hipertrófica/genética , Estudos de Casos e Controles , Proteínas do Citoesqueleto/genética , Mutação , Fenótipo , Volume Sistólico , Função Ventricular Esquerda , Miosinas/genética , Heterozigoto , Masculino
4.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445689

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most prevalent genetically inherited cardiomyopathy that follows an autosomal dominant inheritance pattern. The majority of HCM cases can be attributed to mutation of the MYBPC3 gene, which encodes cMyBP-C, a crucial structural protein of the cardiac muscle. The manifestation of HCM's morphological, histological, and clinical symptoms is subject to the complex interplay of various determinants, including genetic mutation and environmental factors. Approximately half of MYBPC3 mutations give rise to truncated protein products, while the remaining mutations cause insertion/deletion, frameshift, or missense mutations of single amino acids. In addition, the onset of HCM may be attributed to disturbances in the protein and transcript quality control systems, namely, the ubiquitin-proteasome system and nonsense-mediated RNA dysfunctions. The aforementioned genetic modifications, which appear to be associated with unfavorable lifelong outcomes and are largely influenced by the type of mutation, exhibit a unique array of clinical manifestations ranging from asymptomatic to arrhythmic syncope and even sudden cardiac death. Although the current understanding of the MYBPC3 mutation does not comprehensively explain the varied phenotypic manifestations witnessed in patients with HCM, patients with pathogenic MYBPC3 mutations can exhibit an array of clinical manifestations ranging from asymptomatic to advanced heart failure and sudden cardiac death, leading to a higher rate of adverse clinical outcomes. This review focuses on MYBPC3 mutation and its characteristics as a prognostic determinant for disease onset and related clinical consequences in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação , Cardiomiopatia Hipertrófica/genética , Mutação de Sentido Incorreto , Proteínas do Citoesqueleto/metabolismo , Morte Súbita Cardíaca/etiologia
5.
J Biol Chem ; 297(1): 100836, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051236

RESUMO

Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the ß-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin-myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/metabolismo , Mutação/genética , Miosinas/genética , Animais , Bovinos , Humanos , Cinética , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Miosinas/metabolismo , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Reprodutibilidade dos Testes
6.
Curr Atheroscler Rep ; 24(2): 109-117, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080716

RESUMO

PURPOSE OF THE REVIEW: Obesity and type 2 diabetes (T2D) with onset in youth are emerging public health concerns. Youth with obesity and T2D are at risk for the development of heart failure with preserved ejection fraction (HFpEF) due to diabetes-related cardiomyopathy with evidence of precursor stages, namely diastolic dysfunction, present in youth. We review the literature regarding diastolic dysfunction in youth with obesity and T2D; discuss the potential mechanisms including the role of lipids, contractile proteins and their post-translational modifications, and conclude with studies to guide future treatments. RECENT FINDINGS: The diabetes milieu namely hyperglycemia, hyperinsulinemia, and lipotoxicity favor development of diastolic dysfunction and HFpEF. Recent studies show HFpEF is associated with slow left ventricular relaxation and sarcomere stiffness induced by reduced calcium (Ca2+) and ß-adrenergic responses. There are currently no effective therapies available for treating HFpEF. Targeting the sarcomere is an area of ongoing research.


Assuntos
Cardiomiopatias , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Adolescente , Diabetes Mellitus Tipo 2/complicações , Humanos , Lipídeos , Obesidade , Volume Sistólico/fisiologia
7.
BMC Cardiovasc Disord ; 22(1): 278, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717150

RESUMO

Familial hypertrophic cardiomyopathy (FHCM) is an autosomal dominant inherited disease caused by mutations in genes encoding cardiac sarcomere proteins. MicroRNAs (miRNAs) play an important role in the pathogenesis of FHCM. In the present study, we aimed to determine the miRNA profile in FHCM patients with myosin-binding protein C3 (MYBPC3) gene mutations. We recruited three FHCM patients and age- and sex-matched controls. The three probands all had hypertrophic obstructive cardiomyopathy with severe myocardial hypertrophy, and two of the three had a history of sudden cardiac death, representing a "malignant" phenotype. We then compared the miRNA expression profiles of three FHCM patients carrying MYBPC3 gene mutations with those of the normal control group using miRNA sequencing technology. Differentially expressed miRNAs were verified using real-time polymerase chain reaction (qPCR). Target genes and signaling pathways of the identified differentially expressed miRNAs were predicted using bioinformatics analysis. A total of 33 significantly differentially expressed miRNAs were detected in the peripheral blood of the three probands, of which 28 were upregulated, including miR-208b-3p, and 5 were downregulated. Real-time PCR confirmed the upregulated expression of miR-208b-3p in FHCM patients (P < 0.05). Bioinformatics analysis showed that miR-208b-3p was mainly enriched in 79 target genes including UBE2V2, MED13, YBX1, CNKSR2, GATA4, andSOX5/6, et al. Gene ontology (GO) analysis of target genes showed that miR-208b was mainly involved in the processes of negative regulation of transcription from RNA polymerase II promoter, and regulation of transcription, DNA templated. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the target genes regulated by miR-208b-3p were mainly involved in the Wnt signaling pathway. These findings suggest that FHCM patients with MYBPC3 gene mutations have a specific miRNA expression profile, and that miR-208b-3p is significantly upregulated in cardiac hypertrophy. Our results also indicate that miRNA-208b-3p activates the Wnt signaling pathway through its target gene to promote cardiac hypertrophy.


Assuntos
Cardiomiopatia Hipertrófica Familiar , MicroRNAs , Cardiomegalia , Cardiomiopatia Hipertrófica Familiar/diagnóstico , Cardiomiopatia Hipertrófica Familiar/genética , Proteínas de Transporte , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Miosinas/genética , Miosinas/metabolismo , Via de Sinalização Wnt
8.
Proc Natl Acad Sci U S A ; 116(24): 11731-11736, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31142654

RESUMO

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) accelerates cardiac contractility. However, the mechanisms by which cMyBP-C phosphorylation increases contractile kinetics have not been fully elucidated. In this study, we tested the hypothesis that phosphorylation of cMyBP-C releases myosin heads from the inhibited super-relaxed state (SRX), thereby determining the fraction of myosin available for contraction. Mice with various alanine (A) or aspartic acid (D) substitutions of the three main phosphorylatable serines of cMyBP-C (serines 273, 282, and 302) were used to address the association between cMyBP-C phosphorylation and SRX. Single-nucleotide turnover in skinned ventricular preparations demonstrated that phosphomimetic cMyBP-C destabilized SRX, whereas phospho-ablated cMyBP-C had a stabilizing effect on SRX. Strikingly, phosphorylation at serine 282 site was found to play a critical role in regulating the SRX. Treatment of WT preparations with protein kinase A (PKA) reduced the SRX, whereas, in nonphosphorylatable cMyBP-C preparations, PKA had no detectable effect. Mice with stable SRX exhibited reduced force production. Phosphomimetic cMyBP-C with reduced SRX exhibited increased rates of tension redevelopment and reduced binding to myosin. We also used recombinant myosin subfragment-2 to disrupt the endogenous interaction between cMyBP-C and myosin and observed a significant reduction in the population of SRX myosin. This peptide also increased force generation and rate of tension redevelopment in skinned fibers. Taken together, this study demonstrates that the phosphorylation-dependent interaction between cMyBP-C and myosin is a determinant of the fraction of myosin available for contraction. Furthermore, the binding between cMyBP-C and myosin may be targeted to improve contractile function.


Assuntos
Miosinas Cardíacas/metabolismo , Proteínas de Transporte/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação/fisiologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cinética , Camundongos , Camundongos Transgênicos , Contração Miocárdica/fisiologia , Subfragmentos de Miosina/metabolismo , Sarcômeros/metabolismo
9.
Cardiol Young ; 32(4): 539-544, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34180388

RESUMO

OBJECTIVES: This study aims to investigate the pathogenic gene variant in a family with hypertrophic cardiomyopathy by using whole-exome sequencing and to explore the relationship between the gene variant and clinical phenotype. METHODS: Peripheral blood was collected from a family with hypertrophic cardiomyopathy, and deoxyribonucleic acid was extracted. The possible pathogenic genes were detected by whole-exome sequencing, and the variant was verified by Sanger sequencing. Functional change in the variant was predicted by bioinformatics software. Clinical data of the family members are analysed simultaneously. RESULTS: The proband carries a novel heterozygous nonsense variant of MYBPC3:c.2731G > T (p.E911X). The analysis of amino acid conservation suggests that the variation is highly conserved. The three-dimensional protein structure shows that the variant in MYBPC3 results in the incompleteness of the fibronectintype-III2 (p872-967) domain and deletion of Ig-like C2-type 6 (p971-1065) and fibronectin type-III 3 and Ig-like C2-type 7 (p1181-1274) domains, in which p1253-1268 is predicted to have a transmembrane helix structure. Clinical data indicate that the phenotypes of variant carriers with hypertrophic cardiomyopathy are diverse, suggesting the functional damages to the protein of MYBPC3. CONCLUSION: The phenotypes of variant carriers with hypertrophic cardiomyopathy caused by the novel variant in MYBPC3: c.2731G > T (p.E911X) exhibit variable severity and clinical manifestations. Whole-exome sequencing can be used to comprehensive screen hypertrophic cardiomyopathy genes and provide a strong basis for early screening and accurate diagnosis and treatment of hypertrophic cardiomyopathy in children.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Heterozigoto , Humanos , Mutação , Linhagem , Fenótipo , Sequenciamento do Exoma
10.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012114

RESUMO

Variants in cardiac myosin-binding protein C (cMyBP-C) are the leading cause of inherited hypertrophic cardiomyopathy (HCM), demonstrating the key role that cMyBP-C plays in the heart's contractile machinery. To investigate the c-MYBPC3 HCM-related cardiac impairment, we generated a zebrafish mypbc3-knockout model. These knockout zebrafish displayed significant morphological heart alterations related to a significant decrease in ventricular and atrial diameters at systolic and diastolic states at the larval stages. Immunofluorescence staining revealed significant hyperplasia in the mutant's total cardiac and ventricular cardiomyocytes. Although cardiac contractility was similar to the wild-type control, the ejection fraction was significantly increased in the mypbc3 mutants. At later stages of larval development, the mutants demonstrated an early cardiac phenotype of myocardium remodeling, concurrent cardiomyocyte hyperplasia, and increased ejection fraction as critical processes in HCM initiation to counteract the increased ventricular myocardial wall stress. The examination of zebrafish adults showed a thickened ventricular cardiac wall with reduced heart rate, swimming speed, and endurance ability in both the mypbc3 heterozygous and homozygous groups. Furthermore, heart transcriptome profiling showed a significant downregulation of the actin-filament-based process, indicating an impaired actin cytoskeleton organization as the main dysregulating factor associated with the early ventricular cardiac hypertrophy in the zebrafish mypbc3 HCM model.


Assuntos
Cardiomiopatia Hipertrófica , Peixe-Zebra , Actinas/genética , Actinas/metabolismo , Animais , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Hiperplasia/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Transcriptoma , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Balkan J Med Genet ; 25(1): 71-78, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880031

RESUMO

Cardiomyopathies are a heterogeneous group of diseases predominantly affecting the heart muscle and often lead to progressive heart failure-related disability or cardiovascular death. Hypertrophic cardiomyopathy (HCM) is a cardiac muscle disorder mostly caused by the mutations in genes encoding cardiac sarcomere. Germ-line mutations in MYBPC3 causes hypertrophic cardiomyopathy (HCM). However, most of the HCM associated MYBPC3 mutations were truncating mutations. Extreme phenotypic heterogeneity was observed among HCM patients with MYBPC3 mutations. In this study, we investigated a Chinese man who presented with HCM. Whole exome sequencing identified a novel heterozygous deletion (c.3781_3785delGAGGC) in exon 33 of the MYBPC3 in the proband. This heterozygous variant causes frameshift (p.Glu1261Thrfs*3), which predicted to form a truncated MYBPC3 protein. The proband's father also carries this variant in a heterozygous state while the proband's mother did not harbor this variant. Here, we report on a novel deletion in the MYBPC3 gene associated with HCM. We also highlight the importance of whole exome sequencing for molecular diagnosis for the patients with familial HCM.

12.
J Mol Cell Cardiol ; 150: 101-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049255

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited myocardial disease characterized by unexplained left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. Clinical heterogeneity is wide, ranging from asymptomatic individuals to heart failure, arrhythmias and sudden death. HCM is often caused by mutations in genes encoding components of the sarcomere. Among them, MYBPC3, encoding cardiac myosin-myosin binding protein C is the most frequently mutated gene. Three quarter of pathogenic or likely pathogenic mutations in MYBPC3 are truncating and the resulting protein was not detected in HCM myectomy samples. The overall prognosis of the patients is excellent if managed with contemporary therapy, but still remains a significant disease-related health burden, and carriers with double heterozygous, compound heterozygous and homozygous mutations often display a more severe clinical phenotype than single heterozygotes. We propose these individuals as a good target population for MYBPC3 gene therapy.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/uso terapêutico , Terapia Genética , Fatores Etários , Animais , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Proteínas de Transporte/química , Transplante de Coração , Humanos , Mutação/genética
13.
J Mol Cell Cardiol ; 156: 33-44, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33781820

RESUMO

Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) regulates cardiac contraction through modulation of actomyosin interactions mediated by the protein's amino terminal (N')-region (C0-C2 domains, 358 amino acids). On the other hand, dephosphorylation of cMyBP-C during myocardial injury results in cleavage of the 271 amino acid C0-C1f region and subsequent contractile dysfunction. Yet, our current understanding of amino terminus region of cMyBP-C in the context of regulating thin and thick filament interactions is limited. A novel cardiac-specific transgenic mouse model expressing cMyBP-C, but lacking its C0-C1f region (cMyBP-C∆C0-C1f), displayed dilated cardiomyopathy, underscoring the importance of the N'-region in cMyBP-C. Further exploring the molecular basis for this cardiomyopathy, in vitro studies revealed increased interfilament lattice spacing and rate of tension redevelopment, as well as faster actin-filament sliding velocity within the C-zone of the transgenic sarcomere. Moreover, phosphorylation of the unablated phosphoregulatory sites was increased, likely contributing to normal sarcomere morphology and myoarchitecture. These results led us to hypothesize that restoration of the N'-region of cMyBP-C would return actomyosin interaction to its steady state. Accordingly, we administered recombinant C0-C2 (rC0-C2) to permeabilized cardiomyocytes from transgenic, cMyBP-C null, and human heart failure biopsies, and we found that normal regulation of actomyosin interaction and contractility was restored. Overall, these data provide a unique picture of selective perturbations of the cardiac sarcomere that either lead to injury or adaptation to injury in the myocardium.


Assuntos
Proteínas de Transporte/genética , Contração Miocárdica/genética , Miocárdio/metabolismo , Domínios e Motivos de Interação entre Proteínas , Animais , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fosforilação , Sarcômeros/metabolismo
14.
Hum Mutat ; 42(7): 799-810, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942434

RESUMO

Hereditary disorders are frequently caused by genetic variants that affect pre-messenger RNA splicing. Though genetic variants in the canonical splice motifs are almost always disrupting splicing, the pathogenicity of variants in the noncanonical splice sites (NCSS) and deep intronic (DI) regions are difficult to predict. Multiple splice prediction tools have been developed for this purpose, with the latest tools employing deep learning algorithms. We benchmarked established and deep learning splice prediction tools on published gold standard sets of 71 NCSS and 81 DI variants in the ABCA4 gene and 61 NCSS variants in the MYBPC3 gene with functional assessment in midigene and minigene splice assays. The selection of splice prediction tools included CADD, DSSP, GeneSplicer, MaxEntScan, MMSplice, NNSPLICE, SPIDEX, SpliceAI, SpliceRover, and SpliceSiteFinder-like. The best-performing splice prediction tool for the different variants was SpliceRover for ABCA4 NCSS variants, SpliceAI for ABCA4 DI variants, and the Alamut 3/4 consensus approach (GeneSplicer, MaxEntScacn, NNSPLICE and SpliceSiteFinder-like) for NCSS variants in MYBPC3 based on the area under the receiver operator curve. Overall, the performance in a real-time clinical setting is much more modest than reported by the developers of the tools.


Assuntos
Aprendizado Profundo , Transportadores de Cassetes de Ligação de ATP/genética , Benchmarking , Humanos , Íntrons/genética , Mutação , Sítios de Splice de RNA/genética , Splicing de RNA
15.
J Biol Chem ; 295(32): 11275-11291, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32554466

RESUMO

Cardiac myosin-binding protein-C (cMyBP-C) is highly phosphorylated under basal conditions. However, its phosphorylation level is decreased in individuals with heart failure. The necessity of cMyBP-C phosphorylation for proper contractile function is well-established, but the physiological and pathological consequences of decreased cMyBP-C phosphorylation in the heart are not clear. Herein, using intact adult cardiomyocytes from mouse models expressing phospho-ablated (AAA) and phosphomimetic (DDD) cMyBP-C as well as controls, we found that cMyBP-C dephosphorylation is sufficient to reduce contractile parameters and calcium kinetics associated with prolonged decay time of the calcium transient and increased diastolic calcium levels. Isoproterenol stimulation reversed the depressive contractile and Ca2+-kinetic parameters. Moreover, caffeine-induced calcium release yielded no difference between AAA/DDD and controls in calcium content of the sarcoplasmic reticulum. On the other hand, sodium-calcium exchanger function and phosphorylation levels of calcium-handling proteins were significantly decreased in AAA hearts compared with controls. Stress conditions caused increases in both spontaneous aftercontractions in AAA cardiomyocytes and the incidence of arrhythmias in vivo compared with the controls. Treatment with omecamtiv mecarbil, a positive cardiac inotropic drug, rescued the contractile deficit in AAA cardiomyocytes, but not the calcium-handling abnormalities. These findings indicate a cascade effect whereby cMyBP-C dephosphorylation causes contractile defects, which then lead to calcium-cycling abnormalities, resulting in aftercontractions and increased incidence of cardiac arrhythmias under stress conditions. We conclude that improvement of contractile deficits alone without improving calcium handling may be insufficient for effective management of heart failure.


Assuntos
Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Homeostase , Miocárdio/metabolismo , Animais , Camundongos , Fosforilação , Sarcômeros/metabolismo
16.
BMC Cardiovasc Disord ; 21(1): 174, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849460

RESUMO

BACKGROUND: Autopsies regularly aim to clarify the cause of death; however, relatives may directly benefit from autopsy results in the setting of heritable traits ("mortui vivos docent"). CASE PRESENTATION: A case of a sudden unexpected cardiac death of a 5.5-months-old child is presented. Autopsy and thorough postmortem cardiac examinations revealed a massively enlarged heart with endomyocardial fibroelastosis. Postmortem molecular testing (molecular autopsy) revealed an unusual combination of two biparental MYBPC3 gene mutations likely to underlie the cardiac abnormalities. Thus, the molecular autoptic findings also had consequences for the relatives of the deceased child and impact on further family planning. CONCLUSIONS: The presented case highlights the need for clinical autopsies including cardiac examinations and postmortem molecular testing; it also paves the way for further cascade screening of family members for cardiac disease, if a distinct genetic disorder is suspected.


Assuntos
Proteínas de Transporte/genética , Morte Súbita Cardíaca/etiologia , Fibroelastose Endocárdica/genética , Mutação , Autopsia , Cardiomegalia/genética , Cardiomegalia/patologia , Análise Mutacional de DNA , Morte Súbita Cardíaca/patologia , Fibroelastose Endocárdica/patologia , Evolução Fatal , Predisposição Genética para Doença , Hereditariedade , Heterozigoto , Humanos , Lactente , Masculino , Miocárdio/patologia , Linhagem , Fenótipo
17.
Heart Vessels ; 36(10): 1525-1535, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33830315

RESUMO

The mutation MYBPC3-E334K is a culprit mutation of hypertrophic cardiomyopathy (HCM). The pathogenicity of MYBPC3-E334K is conflicting in ClinVar because of the limited segregation data and the relatively high frequency in gnomAD (0.03% overall, with 0.3% in East Asians and 0.8% in Japanese). The main aim is to clarify the clinical importance and phenotype-genotype correlations in subjects with or without MYBPC3-E334K alone. The prevalence of MYBPC3-E334K was sequenced in 1017 HCM unrelated probands. The clinical features, morphology phenotypes, and electrical phenotypes were further analyzed according to the phenotype and genotype status in families with single-mutation MYBPC3-E334K. Nine of 1017 (0.88%) unrelated HCM probands were detected harboring MYBPC3-E334K, and three of them harbored a second variant in sarcomere protein gene. Family study and co-segregation analyses indicated that patients with single-mutation MYBPC3-E334K showed autosomal dominant mode of inheritance with incomplete penetrance. The overall disease penetrance was 52.6%, and the disease penetrance was higher in males than in females (100% in men vs 25% in women, p = 0.003). The mean age at diagnosis of males was approximately 25 years younger than females (36.57 ± 18.65 vs 62.33 ± 12.10, p = 0.062). The variant MYBPC3-E334K was classified as a likely pathogenic variant, and a second sarcomere variant did not reveal obvious cumulative effects. The patients harboring single-mutation MYBPC3-E334K had incomplete penetrance, and males demonstrated higher penetrance and early onset HCM than females. A second sarcomere variant did not reveal obvious cumulative effects.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas de Transporte/genética , Adolescente , Adulto , Idoso , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Adulto Jovem
18.
Medicina (Kaunas) ; 57(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803538

RESUMO

Restrictive cardiomyopathy (RCM) is one of the rarest cardiac disorders, with a very poor prognosis, and heart transplantation is the only long-term treatment of choice. We reported that a Korean family presented different cardiomyopathies, such as idiopathic RCM and hypertrophic cardiomyopathy (HCM), caused by the same MYBPC3 mutation in different individuals. A 74-year-old male was admitted for the evaluation of exertional dyspnea, palpitations, and pitting edema in both legs for several months. Transthoracic echocardiography (TTE) showed RCM with biatrial enlargement and pericardial effusion. Cardiac magnetic resonance (CMR) images revealed normal left ventricular chamber size, borderline diffuse left ventricular hypertrophy and very large atria. In contrast to the proband, CMR images showed asymmetric septal hypertrophy of the left ventricle, consistent with a diagnosis of HCM in the proband's two daughters. Of the five heterozygous variants identified as candidate causes of inherited cardiomyopathy by whole exome sequencing in the proband, Sanger sequencing confirmed the presence of a heterozygous frameshift mutation (NM_000256.3:c.3313_3314insGG; p.Ala1105Glyfs*85) in MYBPC3 in the proband and his affected daughters, but not in his unaffected granddaughter. There is clinical and genetic overlap of HCM with restrictive physiology and RCM, especially when HCM is combined with severe myocardial fibrosis. Family screening with genetic testing and CMR imaging could be excellent tools for the evaluation of idiopathic RCM.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Mutação da Fase de Leitura , Idoso , Proteínas de Transporte/genética , Humanos , Masculino , Mutação , Linhagem , Fenótipo , República da Coreia
19.
Neth Heart J ; 29(6): 318-329, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33532905

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by truncating variants in the MYBPC3 gene. HCM is an important cause of sudden cardiac death; however, overall prognosis is good and penetrance in genotype-positive individuals is incomplete. The underlying mechanisms are poorly understood and risk stratification remains limited. AIM: To create a nationwide cohort of carriers of truncating MYBPC3 variants for identification of predictive biomarkers for HCM development and progression. METHODS: In the multicentre, observational BIO FOr CARe (Identification of BIOmarkers of hypertrophic cardiomyopathy development and progression in Dutch MYBPC3 FOunder variant CARriers) cohort, carriers of the c.2373dupG, c.2827C > T, c.2864_2865delCT and c.3776delA MYBPC3 variants are included and prospectively undergo longitudinal blood collection. Clinical data are collected from first presentation onwards. The primary outcome constitutes a composite endpoint of HCM progression (maximum wall thickness ≥ 20 mm, septal reduction therapy, heart failure occurrence, sustained ventricular arrhythmia and sudden cardiac death). RESULTS: So far, 250 subjects (median age 54.9 years (interquartile range 43.3, 66.6), 54.8% male) have been included. HCM was diagnosed in 169 subjects and dilated cardiomyopathy in 4. The primary outcome was met in 115 subjects. Blood samples were collected from 131 subjects. CONCLUSION: BIO FOr CARe is a genetically homogeneous, phenotypically heterogeneous cohort incorporating a clinical data registry and longitudinal blood collection. This provides a unique opportunity to study biomarkers for HCM development and prognosis. The established infrastructure can be extended to study other genetic variants. Other centres are invited to join our consortium.

20.
Clin Genet ; 98(3): 203-214, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32215921

RESUMO

Hypertrophic cardiomyopathy (HCM) is characterized by an abnormal increase in myocardial mass that affects cardiac structure and function. HCM is the most common inherited cardiovascular disease in humans (0.2%) and the most common cardiovascular disease in cats (14.7%). Feline HCM phenotype is very similar to the phenotype found in humans, but the time frame for the development of the disease is significantly shorter. Similar therapeutic agents are used in its treatment and it has the same complications, such as heart failure, thromboembolism and sudden cardiac death. In contrast to humans, in whom thousands of genetic variants have been identified, genetic studies in cats have been limited to fragment analysis of two sarcomeric genes identifying two variants in MYBPC3 and one in MYH7. Two of these variants have also been associated with human disease. The high prevalence of the reported variants in non-affected cats hinders the assumption of their pathogenicity in heterozygotes. An in-depth review of the literature about genetic studies on feline HCM in comparison with the same disease in humans is presented here. The close similarity in the phenotype and genotype between cats and humans makes the cat an excellent model for the pathophysiological study of the disease and future therapeutic agents.


Assuntos
Cardiomiopatia Hipertrófica/genética , Doenças do Gato/genética , Predisposição Genética para Doença , Sarcômeros/genética , Animais , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Doenças do Gato/tratamento farmacológico , Doenças do Gato/fisiopatologia , Gatos , Modelos Animais de Doenças , Humanos , Cadeias Pesadas de Miosina/genética , Sarcômeros/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA