Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761532

RESUMO

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Assuntos
Cromossomos Humanos/genética , Elementos Facilitadores Genéticos , Amplificação de Genes , Oncogenes , Acetilação , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromatina/metabolismo , DNA de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Neoplásicos , Loci Gênicos , Glioblastoma/genética , Glioblastoma/patologia , Histonas/metabolismo , Humanos , Neuroglia/metabolismo
2.
Mol Cell ; 84(11): 2070-2086.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38703770

RESUMO

The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.


Assuntos
Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Exossomos/metabolismo , Exossomos/genética , Íntrons , Ligação Proteica , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Regulação Neoplásica da Expressão Gênica , RNA/metabolismo , RNA/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proliferação de Células
3.
Mol Cell ; 82(1): 159-176.e12, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34847357

RESUMO

The MYCN oncoprotein drives the development of numerous neuroendocrine and pediatric tumors. Here we show that MYCN interacts with the nuclear RNA exosome, a 3'-5' exoribonuclease complex, and recruits the exosome to its target genes. In the absence of the exosome, MYCN-directed elongation by RNA polymerase II (RNAPII) is slow and non-productive on a large group of cell-cycle-regulated genes. During the S phase of MYCN-driven tumor cells, the exosome is required to prevent the accumulation of stalled replication forks and of double-strand breaks close to the transcription start sites. Upon depletion of the exosome, activation of ATM causes recruitment of BRCA1, which stabilizes nuclear mRNA decapping complexes, leading to MYCN-dependent transcription termination. Disruption of mRNA decapping in turn activates ATR, indicating transcription-replication conflicts. We propose that exosome recruitment by MYCN maintains productive transcription elongation during S phase and prevents transcription-replication conflicts to maintain the rapid proliferation of neuroendocrine tumor cells.


Assuntos
Núcleo Celular/enzimologia , Proliferação de Células , Replicação do DNA , Exossomos/enzimologia , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/enzimologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Exorribonucleases/genética , Exorribonucleases/metabolismo , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Células NIH 3T3 , Neuroblastoma/genética , Neuroblastoma/patologia , Regiões Promotoras Genéticas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Polimerase II/genética , Terminação da Transcrição Genética
4.
Genes Dev ; 34(17-18): 1210-1226, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820040

RESUMO

Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by initial chemosensitivity followed by emergence of chemoresistant disease. To study roles for MYCN amplification in SCLC progression and chemoresistance, we developed a genetically engineered mouse model of MYCN-overexpressing SCLC. In treatment-naïve mice, MYCN overexpression promoted cell cycle progression, suppressed infiltration of cytotoxic T cells, and accelerated SCLC. MYCN overexpression also suppressed response to cisplatin-etoposide chemotherapy, with similar findings made upon MYCL overexpression. We extended these data to genetically perturb chemosensitive patient-derived xenograft (PDX) models of SCLC. In chemosensitive PDX models, overexpression of either MYCN or MYCL also conferred a switch to chemoresistance. To identify therapeutic strategies for MYCN-overexpressing SCLC, we performed a genome-scale CRISPR-Cas9 sgRNA screen. We identified the deubiquitinase USP7 as a MYCN-associated synthetic vulnerability. Pharmacological inhibition of USP7 resensitized chemoresistant MYCN-overexpressing PDX models to chemotherapy in vivo. Our findings show that MYCN overexpression drives SCLC chemoresistance and provide a therapeutic strategy to restore chemosensitivity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/genética
5.
EMBO J ; 40(3): e105784, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411331

RESUMO

High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.


Assuntos
Citocinas/genética , Citocinas/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Regulação para Cima , Quinase do Linfoma Anaplásico/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Análise de Sequência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36695333

RESUMO

The chromosome periphery is a network of proteins and RNAs that coats the outer surface of mitotic chromosomes. Despite the identification of new components, the functions of this complex compartment are poorly characterised. In this study, we identified a novel chromosome periphery-associated protein, CCDC86 (also known as cyclon). Using a combination of RNA interference, microscopy and biochemistry, we studied the functions of CCDC86 in mitosis. CCDC86 depletion resulted in partial disorganisation of the chromosome periphery with alterations in the localisation of Ki-67 (also known as MKI67) and nucleolin (NCL), and the formation of abnormal cytoplasmic aggregates. Furthermore, CCDC86-depleted cells displayed errors in chromosome alignment, altered spindle length and increased apoptosis. These results suggest that, within the chromosome periphery, different subcomplexes that include CCDC86, nucleolin and B23 (nucleophosmin or NPM1) are required for mitotic spindle regulation and correct kinetochore-microtubule attachments, thus contributing to chromosome segregation in mitosis. Moreover, we identified CCDC86 as a MYCN-regulated gene, the expression levels of which represent a powerful marker for prognostic outcomes in neuroblastoma.


Assuntos
Mitose , Fuso Acromático , Humanos , Antígeno Ki-67/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Mitose/genética , Cromossomos/metabolismo , Segregação de Cromossomos/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Células HeLa
7.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36611239

RESUMO

Analysis of the methylome of tumor cell-free deoxyribonucleic acid (DNA; cfDNA) has emerged as a powerful non-invasive technique for cancer subtyping and prognosis. However, its application is frequently hampered by the quality and total cfDNA yield. Here, we demonstrate the feasibility of very low-input cfDNA for whole-methylome and copy-number profiling studies using enzymatic conversion of unmethylated cysteines [enzymatic methyl-seq (EM-seq)] to better preserve DNA integrity. We created a model for predicting genomic subtyping and prognosis with high accuracy. We validated our tool by comparing whole-genome CpG sequencing with in situ cohorts generated with bisulfite conversion and array hybridization, demonstrating that, despite the different techniques and sample origins, information on cfDNA methylation is comparable with in situ cohorts. Our findings support use of liquid biopsy followed by EM-seq to assess methylome of cancer patients, enabling validation in external cohorts. This advance is particularly relevant for rare cancers like neuroblastomas where liquid-biopsy volume is restricted by ethical regulations in pediatric patients.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Criança , Epigenoma , Metilação de DNA , Genômica/métodos , Neoplasias/genética , DNA
8.
FASEB J ; 38(10): e23644, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738472

RESUMO

Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.


Assuntos
Microambiente Tumoral , Animais , Camundongos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Neuroblastoma/imunologia , Neuroblastoma/terapia , Neuroblastoma/patologia , Feminino , Humanos , Imunomodulação , Camundongos Endogâmicos C57BL
9.
Mol Cell Proteomics ; 22(3): 100504, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708875

RESUMO

MYCN amplification is an independent risk factor for poor prognosis in neuroblastoma (NB), but its protein product cannot be directly targeted because of protein structure. Thus, this study aimed to explore novel ways to indirectly target N-Myc by regulating its post-translational modifications (PTMs) and therefore protein stability. N-Myc coimmunoprecipitation combined with HPLC-MS/MS identified 16 PTM residues and 114 potential N-Myc-interacting proteins. Notably, both acetylation and ubiquitination were identified on lysine 199 of N-Myc. We then discovered that p300, which can interact with N-Myc, modulated the protein stability of N-Myc in MYCN-amplified NB cell lines and simultaneously regulated the acetylation level and ubiquitination level on lysine-199 of N-Myc protein in vitro. Furthermore, p300 correlated with poor prognosis in NB patients. Taken together, p300 can be considered as a potential therapeutic target to treat MYCN-amplified NB patients, and other identified PTMs and interacting proteins also provide potential targets for further study.


Assuntos
Lisina , Neuroblastoma , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Lisina/metabolismo , Espectrometria de Massas em Tandem , Processamento de Proteína Pós-Traducional , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estabilidade Proteica , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121657

RESUMO

Immunotherapy has revolutionized cancer treatment, but many cancers are not impacted by currently available immunotherapeutic strategies. Here, we investigated inflammatory signaling pathways in neuroblastoma, a classically "cold" pediatric cancer. By testing the functional response of a panel of 20 diverse neuroblastoma cell lines to three different inflammatory stimuli, we found that all cell lines have intact interferon signaling, and all but one lack functional cytosolic DNA sensing via cGAS-STING. However, double-stranded RNA (dsRNA) sensing via Toll-like receptor 3 (TLR3) was heterogeneous, as was signaling through other dsRNA sensors and TLRs more broadly. Seven cell lines showed robust response to dsRNA, six of which are in the mesenchymal epigenetic state, while all unresponsive cell lines are in the adrenergic state. Genetically switching adrenergic cell lines toward the mesenchymal state fully restored responsiveness. In responsive cells, dsRNA sensing results in the secretion of proinflammatory cytokines, enrichment of inflammatory transcriptomic signatures, and increased tumor killing by T cells in vitro. Using single-cell RNA sequencing data, we show that human neuroblastoma cells with stronger mesenchymal signatures have a higher basal inflammatory state, demonstrating intratumoral heterogeneity in inflammatory signaling that has significant implications for immunotherapeutic strategies in this aggressive childhood cancer.


Assuntos
Epigênese Genética/genética , Inflamação/genética , Neuroblastoma/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/genética , Humanos , Fatores Imunológicos/genética , Imunoterapia/métodos , Masculino , Camundongos , Camundongos SCID , Nucleotidiltransferases/genética , RNA de Cadeia Dupla/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Transcriptoma/genética
11.
Proc Natl Acad Sci U S A ; 119(28): e2200721119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867756

RESUMO

Most retinoblastomas develop from maturing cone precursors in response to biallelic RB1 loss and are dependent on cone maturation-related signaling. Additionally, ∼2% lack RB1 mutations but have MYCN amplification (MYCNA), N-Myc protein overexpression, and more rapid and invasive growth, yet the MYCNA retinoblastoma cell of origin and basis for its responses to deregulated N-Myc are unknown. Here, using explanted cultured retinae, we show that ectopic N-Myc induces cell cycle entry in cells expressing markers of several retinal types yet induces continuous proliferation and tumorigenesis only in cone precursors. Unlike the response to RB1 loss, both immature cone arrestin-negative (ARR3-) and maturing ARR3+ cone precursors proliferate, and maturing cone precursors rapidly dedifferentiate, losing ARR3 as well as L/M-opsin expression. N-Myc-overexpressing retinal cells also lose cell lineage constraints, occasionally coexpressing the cone-specific RXRγ with the rod-specific NRL or amacrine-specific AP2α and widely coexpressing RXRγ with the progenitor and Müller cell-specific SOX9 and retinal ganglion cell-specific BRN3 and GAP43. Mechanistically, N-Myc induced Cyclin D2 and CDK4 overexpression, pRB phosphorylation, and SOX9-dependent proliferation without a retinoma-like stage that characterizes pRB-deficient retinoblastoma, despite continuous p16INK4A expression. Orthotopic xenografts of N-Myc-overexpressing retinal cells formed tumors with retinal cell marker expression similar to those in MYCN-transduced retinae and MYCNA retinoblastomas in patients. These findings demonstrate the MYCNA retinoblastoma origin from immature and lineage-deconstrained cone precursors, reveal their opportunistic use of an undifferentiated retinal progenitor cell feature, and illustrate that different cancer-initiating mutations cooperate with distinct developmental stage-specific cell signaling circuitries to drive retinoblastoma tumorigenesis.


Assuntos
Carcinogênese , Proteína Proto-Oncogênica N-Myc , Células Fotorreceptoras Retinianas Cones , Neoplasias da Retina , Retinoblastoma , Carcinogênese/genética , Ciclo Celular , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia
12.
Proc Natl Acad Sci U S A ; 119(49): e2208904119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36445966

RESUMO

The protooncoprotein N-Myc, which is overexpressed in approximately 25% of neuroblastomas as the consequence of MYCN gene amplification, has long been postulated to regulate DNA double-strand break (DSB) repair in neuroblastoma cells, but experimental evidence of this function is presently scant. Here, we show that N-Myc transcriptionally activates the long noncoding RNA MILIP to promote nonhomologous end-joining (NHEJ) DNA repair through facilitating Ku70-Ku80 heterodimerization in neuroblastoma cells. High MILIP expression was associated with poor outcome and appeared as an independent prognostic factor in neuroblastoma patients. Knockdown of MILIP reduced neuroblastoma cell viability through the induction of apoptosis and inhibition of proliferation, retarded neuroblastoma xenograft growth, and sensitized neuroblastoma cells to DNA-damaging therapeutics. The effect of MILIP knockdown was associated with the accumulation of DNA DSBs in neuroblastoma cells largely due to decreased activity of the NHEJ DNA repair pathway. Mechanistical investigations revealed that binding of MILIP to Ku70 and Ku80 increased their heterodimerization, and this was required for MILIP-mediated promotion of NHEJ DNA repair. Disrupting the interaction between MILIP and Ku70 or Ku80 increased DNA DSBs and reduced cell viability with therapeutic potential revealed where targeting MILIP using Gapmers cooperated with the DNA-damaging drug cisplatin to inhibit neuroblastoma growth in vivo. Collectively, our findings identify MILIP as an N-Myc downstream effector critical for activation of the NHEJ DNA repair pathway in neuroblastoma cells, with practical implications of MILIP targeting, alone and in combination with DNA-damaging therapeutics, for neuroblastoma treatment.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Neuroblastoma , RNA Longo não Codificante , Humanos , DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , RNA Longo não Codificante/genética
13.
Dev Biol ; 502: 20-37, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423592

RESUMO

The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.


Assuntos
Endoderma , Redes Reguladoras de Genes , Proteína Proto-Oncogênica N-Myc/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica no Desenvolvimento/genética
14.
J Biol Chem ; 299(7): 104856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230388

RESUMO

Neuroblastoma (NB) is one of the most common extracranial solid tumors in children. MYCN gene amplification is highly associated with poor prognosis in high-risk NB patients. In non-MYCN-amplified high-risk NB patients, the expression of c-MYC (MYCC) and its target genes is highly elevated. USP28 as a deubiquitinase is known to regulate the stability of MYCC. We show here USP28 also regulates the stability of MYCN. Genetic depletion or pharmacologic inhibition of the deubiquitinase strongly destabilizes MYCN and stops the growth of NB cells that overexpress MYCN. In addition, MYCC could be similarly destabilized in non-MYCN NB cells by compromising USP28 function. Our results strongly suggest USP28 as a therapeutic target for NB with or without MYCN amplification/overexpression.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Criança , Humanos , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Células-Tronco Neurais/metabolismo , Neuroblastoma/patologia , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/metabolismo
15.
Int J Cancer ; 155(3): 582-594, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380807

RESUMO

The proto-oncogene MYCN expression marked a cancer stem-like cell population in hepatocellular carcinoma (HCC) and served as a therapeutic target of acyclic retinoid (ACR), an orally administered vitamin A derivative that has demonstrated promising efficacy and safety in reducing HCC recurrence. This study investigated the role of MYCN as a predictive biomarker for therapeutic response to ACR and prognosis of HCC. MYCN gene expression in HCC was analyzed in the Cancer Genome Atlas and a Taiwanese cohort (N = 118). Serum MYCN protein levels were assessed in healthy controls (N = 15), patients with HCC (N = 116), pre- and post-surgical patients with HCC (N = 20), and a subset of patients from a phase 3 clinical trial of ACR (N = 68, NCT01640808). The results showed increased MYCN gene expression in HCC tumors, which positively correlated with HCC recurrence in non-cirrhotic or single-tumor patients. Serum MYCN protein levels were higher in patients with HCC, decreased after surgical resection of HCC, and were associated with liver functional reserve and fibrosis markers, as well as long-term HCC prognosis (>4 years). Subgroup analysis of a phase 3 clinical trial of ACR identified serum MYCN as the risk factor most strongly associated with HCC recurrence. Patients with HCC with higher serum MYCN levels after a 4-week treatment of ACR exhibited a significantly higher risk of recurrence (hazard ratio 3.27; p = .022). In conclusion, serum MYCN holds promise for biomarker-based precision medicine for the prevention of HCC, long-term prognosis of early-stage HCC, and identification of high-response subgroups for ACR-based treatment.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína Proto-Oncogênica N-Myc , Recidiva Local de Neoplasia , Proto-Oncogene Mas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/patologia , Proteína Proto-Oncogênica N-Myc/genética , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/sangue , Prognóstico
16.
Pediatr Blood Cancer ; 71(9): e31176, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38967585

RESUMO

INTRODUCTION: Neuroblastoma is a pediatric malignancy with heterogeneous clinical outcomes. Our aim was to identify prognostic genetic markers for patients with neuroblastoma, who were treated with the Taiwan Pediatric Oncology Group (TPOG) neuroblastoma N2002 protocol, to improve risk stratification and inform treatment. METHODS: Our analysis was based on 53 primary neuroblastoma specimens, diagnosed pre-chemotherapy, and 11 paired tumor relapse specimens. Deep sequencing of 113 target genes was performed using a custom panel. Multiplex ligation-dependent probe amplification was performed to identify clinical outcomes related to copy-number variations. RESULTS: We identified 128 variations associated with survival, with the number of variations being higher in the relapse than that in the diagnostic specimen (p = .03). The risk of event and mortality was higher among patients with a tumor mutational burden ≥10 than that in patients with a lower burden (p < .0001). Multivariate analysis identified tumor mutational burden, MYCN amplification, and chromosome 3p deletion as significant prognostic factors, independent of age at diagnosis, sex, and tumor stage. The 5-year event-free survival and overall survival rate was lower among patients with high tumor burden than in patients with low tumor burden. Furthermore, there was no survival of patients with an ALK F1147L variation at 5 years after diagnosis. CONCLUSIONS: Genome sequencing to determine the tumor mutational burden and ALK variations can improve the risk classification of neuroblastoma and inform treatment.


Assuntos
Mutação , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Masculino , Feminino , Pré-Escolar , Lactente , Criança , Prognóstico , Biomarcadores Tumorais/genética , Taxa de Sobrevida , Seguimentos , Variações do Número de Cópias de DNA , Carga Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Adolescente
17.
BMC Cardiovasc Disord ; 24(1): 82, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297207

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is associated with cardiac dysfunction and is a key risk factor for heart failure and even sudden death. This study investigates the function of Mycn in cardiac hypertrophy and explores the interacting molecules. METHODS: A mouse model of cardiac hypertrophy was induced by isoproterenol (ISO). The cardiac dysfunction was assessed by the heart weight-to-body weight ratio (HW/BW), echocardiography assessment, pathological staining, biomarker detection, and cell apoptosis. Transcriptome alteration in cardiac hypertrophy was analyzed by bioinformatics analysis. Gain- or loss-of-function studies of MYCN proto-oncogene (Mycn), ubiquitin specific peptidase 2 (USP2), and junction plakoglobin (JUP) were performed. The biological functions of Mycn were further examined in ISO-treated cardiomyocytes. The molecular interactions were verified by luciferase assay or immunoprecipitation assays. RESULTS: Mycn was poorly expressed in ISO-treated mice, and its upregulation reduced HW/BW, cell surface area, oxidative stress, and inflammation while improving cardiac function of mice. It also reduced apoptosis of cardiomyocytes in mice and those in vitro induced by ISO. Mycn bound to the USP2 promoter to activate its transcription. USP2 overexpression exerted similar myocardial protective functions. It stabilized JUP protein by deubiquitination modification, which blocked the Akt/ß-catenin pathway. Knockdown of JUP restored phosphorylation of Akt and ß-catenin protein level, which negated the protective effects of USP2. CONCLUSION: This study demonstrates that Mycn activates USP2 transcription, which mediates ubiquitination and protein stabilization of JUP, thus inactivating the Akt/ß-catenin axis and alleviating cardiac hypertrophy-induced heart failure.


Assuntos
Insuficiência Cardíaca , Proteína Proto-Oncogênica N-Myc , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , gama Catenina/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Isoproterenol , Miócitos Cardíacos/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33762304

RESUMO

MYCN-amplified neuroblastoma is a lethal subset of pediatric cancer. MYCN drives numerous effects in the cell, including metabolic changes that are critical for oncogenesis. The understanding that both compensatory pathways and intrinsic redundancy in cell systems exists implies that the use of combination therapies for effective and durable responses is necessary. Additionally, the most effective targeted therapies exploit an "Achilles' heel" and are tailored to the genetics of the cancer under study. We performed an unbiased screen on select metabolic targeted therapy combinations and correlated sensitivity with over 20 subsets of cancer. We found that MYCN-amplified neuroblastoma is hypersensitive to the combination of an inhibitor of the lactate transporter MCT1, AZD3965, and complex I of the mitochondrion, phenformin. Our data demonstrate that MCT4 is highly correlated with resistance to the combination in the screen and lowly expressed in MYCN-amplified neuroblastoma. Low MCT4 combines with high expression of the MCT2 and MCT1 chaperone CD147 in MYCN-amplified neuroblastoma, altogether conferring sensitivity to the AZD3965 and phenformin combination. The result is simultaneous disruption of glycolysis and oxidative phosphorylation, resulting in dramatic disruption of adenosine triphosphate (ATP) production, endoplasmic reticulum stress, and cell death. In mouse models of MYCN-amplified neuroblastoma, the combination was tolerable at concentrations where it shrank tumors and did not increase white-blood-cell toxicity compared to single drugs. Therefore, we demonstrate that a metabolic combination screen can identify vulnerabilities in subsets of cancer and put forth a metabolic combination therapy tailored for MYCN-amplified neuroblastoma that demonstrates efficacy and tolerability in vivo.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Simportadores/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Basigina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Amplificação de Genes , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Fenformin/farmacologia , Fenformin/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Simportadores/metabolismo , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Ann Diagn Pathol ; 70: 152299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555652

RESUMO

BACKGROUND: Ependymomas (EPNs) of the spinal region are a heterogeneous group of tumors that account for 17.6 % in adults. Four types have been recognized: subependymoma, spinal ependymoma (Sp-EPN), myxopapillary ependymoma (MPE), and Sp-EPN-MYCN amplified, each with distinct histopathological and molecular features. METHODS: This study investigated the clinical and pathological characteristics and MYCN expression levels of 35 Sp-EPN and MPE cases diagnosed at a tertiary university hospital over a decade-long period. RESULTS: Twenty-five cases were Sp-EPN and 10 cases were MPE, and were graded as WHO grade 2, except for 1 Sp-EPN case with grade 3 features. The most common symptoms were lower back pain and difficulty in walking. Radiology showed different tumor sizes and locations along the spinal cord, with MPEs exclusively in the lumbosacral region. Surgery was the main treatment, and gross total resection was achieved in all cases except for one. Immunohistochemistry showed low Ki-67 proliferation indices in all cases, and no MYCN expression. During follow-up, 3 (8.6 %) cases recurred and/or metastasized and 5 cases (14.3 %) died. No significant difference was found in disease-free survival or overall survival between Sp-EPN and MPE cases. However, 3 cases with grade 2 histology demonstrated recurrence and/or metastasis, despite the lack of MYCN expression. CONCLUSION: Our results underscore the multifactorial nature of tumor aggressiveness in EPNs of the spinal region. This study enhances our knowledge of the clinical and pathological features of Sp-EPNs and MPEs and highlights the need for better diagnostic and prognostic markers in these rare tumors.


Assuntos
Ependimoma , Proteína Proto-Oncogênica N-Myc , Neoplasias da Medula Espinal , Humanos , Ependimoma/patologia , Ependimoma/genética , Ependimoma/metabolismo , Ependimoma/diagnóstico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neoplasias da Medula Espinal/patologia , Neoplasias da Medula Espinal/metabolismo , Neoplasias da Medula Espinal/genética , Neoplasias da Medula Espinal/diagnóstico , Adulto Jovem , Idoso , Adolescente , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Imuno-Histoquímica/métodos
20.
Pediatr Surg Int ; 40(1): 195, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017743

RESUMO

BACKGROUND: We previously showed that total tumor resection enhances metastatic growth in a syngeneic metastatic mouse model of neuroblastoma. In this study, we further investigated which surgical factors contributed most to metastatic growth. METHODS: Tumor cells derived from MYCN transgenic mice were subcutaneously injected into wild-type mice. Mice were randomly assigned to receive partial resection (PR group), subcutaneous implantation of a sponge (Sp group), or observation (Obs group). The lymph node metastasis volume and the frequency of lung metastasis were compared 14 days after assignment by measuring C-reactive protein (CRP) and interleukin-6 (IL-6) levels. RESULTS: The lymph node metastasis volume in the Sp group was larger than in the Obs group (148.4 [standard deviation {SD}: 209.5] vs. 10.2 [SD 12.8] mm3). The frequency of lung metastasis was greater in the Sp group than in the PR group (11.9 [SD 12.2] vs. 6.6 [SD 4.0] counts/slide). The CRP level in the Sp group was higher than in the PR group (2.3 [SD 0.5] vs. 1.5 [SD 0.4] µg/mL), and the IL-6 level in the Sp group was higher than in the PR or Obs groups (28.4 [SD 34.5] vs. 12.4 [SD 19.0] vs. 5.4 [SD 8.1] pg/mL). CONCLUSION: Metastatic growth may be enhanced by systemic inflammation.


Assuntos
Proteína C-Reativa , Modelos Animais de Doenças , Inflamação , Neoplasias Pulmonares , Neuroblastoma , Animais , Neuroblastoma/patologia , Camundongos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Proteína C-Reativa/metabolismo , Inflamação/patologia , Interleucina-6 , Metástase Linfática , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA