Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G492-500, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27418681

RESUMO

The technically easier one-anastomosis (mini) gastric bypass (MGB) is associated with similar metabolic improvements and weight loss as the Roux-en-Y gastric bypass (RYGB). However, MGB is controversial and suspected to result in greater malabsorption than RYGB. In this study, we compared macronutrient absorption and intestinal adaptation after MGB or RYGB in rats. Body weight and food intake were monitored and glucose tolerance tests were performed in rats subjected to MGB, RYGB, or sham surgery. Carbohydrate, protein, and lipid absorption was determined by fecal analyses. Intestinal remodeling was evaluated by histology and immunohistochemistry. Peptide and amino acid transporter mRNA levels were measured in the remodeled intestinal mucosa and those of anorexigenic and orexigenic peptides in the hypothalamus. The MGB and RYGB surgeries both resulted in a reduction of body weight and an improvement of glucose tolerance relative to sham rats. Hypothalamic orexigenic neuropeptide gene expression was higher in MGB rats than in RYGB or sham rats. Fecal losses of calories and proteins were greater after MGB than RYGB or sham surgery. Intestinal hyperplasia occurred after MGB and RYGB with increased jejunum diameter, higher villi, and deeper crypts than in sham rats. Peptidase and peptide or amino acid transporter genes were overexpressed in jejunal mucosa from MGB rats but not RYGB rats. In rats, MGB led to greater protein malabsorption and energy loss than RYGB. This malabsorption was not compensated by intestinal overgrowth and increased expression of peptide transporters in the jejunum.


Assuntos
Adaptação Fisiológica/fisiologia , Derivação Gástrica/efeitos adversos , Derivação Gástrica/métodos , Intestinos/fisiologia , Síndromes de Malabsorção/etiologia , Animais , Regulação da Expressão Gênica , Intolerância à Glucose , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ratos , Redução de Peso
2.
Nutr Res ; 118: 70-84, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598559

RESUMO

Global prevalence of obesity and type 2 diabetes are rapidly increasing to pandemic proportions. A novel supplement composed of 5 plant extracts from olive leaf, bilberry, artichoke, chrysanthellum, and black pepper was designed to prevent type 2 diabetes development in people at risk. It was previously shown to improve body weight and glucose control in preclinical rodent models, with these effects being accompanied by increased fecal energy excretion and in vitro inhibition of several digestive enzymes. Thus, we hypothesized that, in mice fed a high-fat diet (HFD), a single dose of this botanical supplementation would decrease the responses to oral fat and carbohydrate tolerance tests, and that chronic supplementation would result in increased fecal triglyceride content. We showed that acute administration in HFD-fed mice (1.452 g/kg body weight) markedly reduced circulating triglycerides following an oral lipid gavage, whereas glycemic responses to various carbohydrate tests were only mildly affected. When incorporated into the food (2.5%) of HFD-fed mice, chronic supplementation prevented body weight gain and improved glucose homeostasis and lipid tolerance. Fecal free fatty acid content, but not triglyceride, was significantly increased in supplemented animals, suggesting reduced lipid absorption in the digestive tract. Congruently, this botanical supplementation downregulated several genes associated with fatty acid transport whose expression was increased by HFD, principally in the jejunum. This study provides novel insights as for the mode of action behind the antiobesity effect of this plant-based supplementation, in HFD-fed mice.


Assuntos
Diabetes Mellitus Tipo 2 , Extratos Vegetais , Humanos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Polifenóis/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Aumento de Peso , Peso Corporal , Triglicerídeos/metabolismo , Nutrientes , Carboidratos , Camundongos Endogâmicos C57BL
3.
Foods ; 11(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35010185

RESUMO

Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that ß-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of ß-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure-function relationships of ß-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived ß-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of ß-glucans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA