Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 31(6): 874-888, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37234341

RESUMO

Phaleria macrocarpa (Scheff.) Boerl. is geographically distributed around Papua Island, Indonesia. Traditionally, P. macrocarpa is exercised to reduce pain, stomachache, diarrhea, tumor problems, blood glucose, cholesterol, and blood pressure. A growing interest in the medicinal values of P. macrocarpa especially in Asia reflects the usage of diverse extraction techniques, particularly modern approaches. In this review article, the extraction methods and solvents relevant to P. macrocarpa were discussed, with the extent of its pharmacological activities. Recent bibliographic databases such as Google Scholar, PubMed, and Elsevier between 2010 and 2022 were assessed. Based on the findings, the pharmacological studies of P. macrocarpa are still pertinent to its traditional uses but primarily emphasise anti-proliferative activity especially colon and breast cancer cells with low toxicity and fruit as the most studied plant part. The utilization of modern separation techniques has predominantly been aimed at extracting mangiferin and phenolic-rich compounds and evaluating their antioxidant capacity. However, the isolation of bioactive compounds remains a challenge, leading to the extensive utilization of the extracts in in vivo studies. This review endeavors to highlight modern extraction methods that could potentially be used as a point of reference in the future for exploring novel bioactive compounds and drug discovery on a multi-scale extraction level.

2.
Pharm Nanotechnol ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37264623

RESUMO

BACKGROUND: Mahkota Dewa (Phaleria macrocarpa) seed has various phytochemical compounds and low pharmacological activities, including antioxidant and anti-inflammatory activities. OBJECTIVE: This research aimed to study nanoemulsion preparations of Mahkota Dewa seed (NE-BMD) for their anti-oxidant and anti-inflammatory properties. METHOD: The nanoemulsion was prepared using an ultrasonication probe and followed by selecting two formulations, F7 and F8. The anti-oxidant activity test was carried out using the DPPH method, meanwhile, the anti-inflammatory activity test was conducted using the protein denaturation method with Bovine Serum Albumin (BSA) for in vitro studies. In addition, for in vivo studies, the plethysmometer method was used with 1% carrageenan as an inducer. RESULTS: The characterization of NE-BMD preparations showed that the particle size and polydispersity index were 26,83 ± 1,27 nm (PI: 0.36 ± 0.03) and 30.73 ± 1.50 nm (PI: 0.32 ± 0.06) for NE-BMD F7 and F8 formulation, respectively. In addition, the anti-oxidant activity test revealed that the IC50 values of NE_BMD F7 and F8 were 15.62 ± 1.40 µg/ml and 28.39 ± 4.69 µg/ml, respectively. The protein denaturation test showed that the IC50 values for NE-BMD F7 and F8 were 94.39 ± 1.24 µg/ml and 196.63 ± 1.61 µg/ml, respectively. Meanwhile, the study of anti-inflammatory in vivo for NE-BMD F7 with a 1 g/kg BW dose showed a significant improvement in anti-inflammatory activity compared to BMD extract. CONCLUSION: This research suggests that due to the smaller drug particle size, the nanoemulsion dosage form of Mahkota Dewa seed extract has anti-oxidant and anti-inflammatory activities, thus emerging as an adjunct alternative treatment for inflammation.

3.
J Food Biochem ; 45(7): e13817, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34137461

RESUMO

The fruit and leaf of God's crown (Phaleria macrocarpa) have been traditionally used to treat a wide variety of diseases. However, the proteins of this tropical plant are still heavily understudied. Three protein extraction methods; phenol (Phe), trichloroacetic acid (TCA)-acetone-phenol (TCA-A-Phe), and ultrasonic (Ult) were compared on the fruit and leaf of P. macrocarpa. The Phe extraction method showed the highest percentage of recovered protein after the resolubilization process for both leaf (12.24%) and fruit (30.41%) based on protein yields of the leaf (6.15 mg/g) and fruit (36.98 mg/g). Phe and TCA-A-Phe extraction methods gave well-resolved bands over a wide range of molecular weights through sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following liquid chromatography-tandem mass spectrometry analysis, proteins identified through the Phe extraction method were 30%-35% enzymatic proteins, including oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases that possess various biological functions. PRACTICAL APPLICATIONS: Every part of God's crown plant is traditionally consumed to treat various illnesses. While plant's benefits are well known and have led to a plethora of health products, the proteome remains mostly unknown. This study compares three protein extraction methods for the leaf and fruit of P. macrocarpa and identifies their proteins thru LC-MS/MS coupled with PEAKS. These method comparisons can be a guide for works on other plants as well. In addition, the proteomics data from this study may shed light on the functional properties of these plant parts and their products.


Assuntos
Plantas Medicinais , Cromatografia Líquida , Frutas , Proteômica , Espectrometria de Massas em Tandem
4.
Pharmacogn Rev ; 7(13): 73-80, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23922460

RESUMO

Phaleria macrocarpa, commonly known as Mahkota dewa is a medicinal plant that is indigenous to Indonesia and Malaysia. Extracts of P. macrocarpa have been used since years in traditional medicine that are evaluated scientifically as well. The extracts are reported for a number of valuable medicinal properties such as anti-cancer, anti-diabetic, anti-hyperlipidemic, anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant and vasorelaxant effect. The constituents isolated from different parts of P. macrocarpa include Phalerin, gallic acid, Icaricide C, magniferin, mahkoside A, dodecanoic acid, palmitic acid, des-acetylflavicordin-A, flavicordin-A, flavicordin-D, flavicordin-A glucoside, ethyl stearate, lignans, alkaloids andsaponins. The present review is an up-to-date summary of occurrence, botanical description, ethnopharmacology, bioactivity and toxicological studies related to P. macrocarpa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA