Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(21): 7789-94, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821780

RESUMO

Mechanisms that control the levels and activities of reactive oxygen species (ROS) in normal human mammary cells are poorly understood. We show that purified normal human basal mammary epithelial cells maintain low levels of ROS primarily by a glutathione-dependent but inefficient antioxidant mechanism that uses mitochondrial glutathione peroxidase 2. In contrast, the matching purified luminal progenitor cells contain higher levels of ROS, multiple glutathione-independent antioxidants and oxidative nucleotide damage-controlling proteins and consume O2 at a higher rate. The luminal progenitor cells are more resistant to glutathione depletion than the basal cells, including those with in vivo and in vitro proliferation and differentiation activity. The luminal progenitors also are more resistant to H2O2 or ionizing radiation. Importantly, even freshly isolated "steady-state" normal luminal progenitors show elevated levels of unrepaired oxidative DNA damage. Distinct ROS control mechanisms operating in different subsets of normal human mammary cells could have differentiation state-specific functions and long-term consequences.


Assuntos
Células Epiteliais/classificação , Células Epiteliais/metabolismo , Glutationa/metabolismo , Glândulas Mamárias Humanas/citologia , Estresse Oxidativo/fisiologia , Western Blotting , Dano ao DNA/fisiologia , Citometria de Fluxo , Humanos , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/metabolismo
2.
Semin Cell Dev Biol ; 25-26: 43-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24445189

RESUMO

The stroma, which is composed of supporting cells and connective tissue, comprises a large component of the local microenvironment of many epithelial cell types, and influences several fundamental aspects of cell behaviour through both tissue interactions and niche regulation. The significance of the stroma in development and disease has been increasingly recognised. Whereas normal stroma is essential for various developmental processes during vertebrate organogenesis, it can be deregulated and become abnormal, which in turn can initiate or promote a disease process, including cancer. The mouse mammary gland has emerged in recent years as an excellent model system for understanding stromal function in both developmental and cancer biology. Here, we take a systematic approach and focus on the dynamic interactions that the stroma engages with the epithelium during mammary specification, cell differentiation, and branching morphogenesis of both the embryonic and postnatal development of the mammary gland. Similar stromal-epithelial interactions underlie the aetiology of breast cancer, making targeting the cancer stroma an increasingly important and promising therapeutic strategy to pursue for breast cancer treatment.


Assuntos
Mama/embriologia , Mama/crescimento & desenvolvimento , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Animais , Mama/citologia , Neoplasias da Mama/patologia , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Epitélio/embriologia , Epitélio/crescimento & desenvolvimento , Feminino , Humanos , Glândulas Mamárias Animais/citologia , Camundongos , Células Estromais/citologia
3.
Biomater Adv ; 160: 213847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657288

RESUMO

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Colágeno , Combinação de Medicamentos , Células Epiteliais , Hidrogéis , Laminina , Peptídeos , Proteoglicanas , Laminina/farmacologia , Laminina/química , Hidrogéis/química , Hidrogéis/farmacologia , Proteoglicanas/farmacologia , Proteoglicanas/química , Colágeno/química , Colágeno/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/citologia , Humanos , Feminino , Técnicas de Cultura de Células em Três Dimensões/métodos , Sobrevivência Celular/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Glândulas Mamárias Humanas/citologia , Organoides/efeitos dos fármacos , Organoides/citologia , Técnicas de Cultura de Células/métodos
4.
J Dev Orig Health Dis ; 14(1): 122-131, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35670520

RESUMO

The functional differentiation of the mammary gland (MG) is fundamental for the prevention of mammary pathologies. This process occurs throughout pregnancy and lactation, making these stages key events for the study of pathologies associated with development and differentiation. Many studies have investigated the link between mammary pathologies and thyroid diseases, but most have ignored the role of thyroid hormone (TH) in the functional differentiation of the MG. In this work, we show the long-term impact of hypothyroidism in an animal model whose lactogenic differentiation occurred at low TH levels. We evaluated the ability of the MG to respond to hormonal control and regulate cell cycle progression. We found that a deficit in TH throughout pregnancy and lactation induces a long-term decrease in Rb phosphorylation, increases p53, p21, Cyclin D1 and Ki67 expression, reduces progesterone receptor expression, and induces nonmalignant lesions in mammary tissue. This paper shows the importance of TH level control during mammary differentiation and its long-term impact on mammary function.


Assuntos
Hipotireoidismo , Glândulas Mamárias Animais , Gravidez , Feminino , Animais , Lactação/metabolismo , Hipotireoidismo/complicações , Diferenciação Celular
5.
Biomaterials ; 218: 119337, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325803

RESUMO

Laminin-111 (Ln-1), an extracellular matrix (ECM) glycoprotein found in the basement membrane of mammary gland epithelia, is essential for lactation. In mammary epithelial cells (MECs), dystroglycan (Dg) is believed to be necessary for polymerization of laminin-111 into networks., thus we asked whether correct polymerization could compensate for Dg loss. Artificially polymerized laminin-111 and the laminin-glycoprotein mix Matrigel, both formed branching, spread networks with fractal dimensions from 1.7 to 1.8, whereas laminin-111 in neutral buffers formed small aggregates without fractal properties (a fractal dimension of 2). In Dg knockout cells, either polymerized laminin-111 or Matrigel readily attached to the cell surface, whereas aggregated laminin-111 did not. In contrast, polymerized and aggregated laminin-111 bound similarly to Dg knock-ins. Both polymerized laminin-111 and Matrigel promoted cell rounding, clustering, formation of tight junctions, and expression of milk proteins, whereas aggregated Ln-1 did not attach to cells or promote functional differentiation. These findings support that the microstructure of Ln-1 networks in the basement membrane regulates mammary epithelial cell function.


Assuntos
Células Epiteliais/metabolismo , Laminina/metabolismo , Proteínas do Leite/metabolismo , Animais , Membrana Basal/metabolismo , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Células Cultivadas , Distroglicanas/genética , Distroglicanas/metabolismo , Matriz Extracelular/metabolismo , Camundongos , Microscopia Eletrônica de Varredura
6.
Cell Rep ; 18(12): 2825-2835, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329676

RESUMO

Delineating the mammary differentiation hierarchy is important for the study of mammary gland development and tumorigenesis. Mammary luminal cells are considered a major origin of human breast cancers. However, how estrogen-receptor-positive (ER+) and ER- luminal cells are developed and maintained remains poorly understood. The prevailing model suggests that a common stem/progenitor cell generates both cell types. Through genetic lineage tracing in mice, we find that SOX9-expressing cells specifically contribute to the development and maintenance of ER- luminal cells and, to a lesser degree, basal cells. In parallel, PROM1-expressing cells give rise only to ER+ luminal cells. Both SOX9+ and PROM1+ cells specifically sustain their respective lineages even after pregnancy-caused tissue remodeling or serial transplantation, demonstrating characteristic properties of long-term repopulating stem cells. Thus, our data reveal that mouse mammary ER+ and ER- luminal cells are two independent lineages that are maintained by distinct stem cells, providing a revised mammary epithelial cell hierarchy.


Assuntos
Linhagem da Célula , Glândulas Mamárias Animais/citologia , Receptores de Estrogênio/metabolismo , Células-Tronco/citologia , Antígeno AC133/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Camundongos , Organogênese , Regeneração , Fatores de Transcrição SOX9/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA