Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Infect Dis ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446996

RESUMO

The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in, or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by Dectin-2. In conclusion, N-linked mannan is needed, in addition to ß-glucans, for an effective induction of trained immunity by C. albicans.

2.
Glycobiology ; 34(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39088584

RESUMO

The limited availability of efficient treatments for Candida infections and the increased emergence of antifungal-resistant strains stimulates the search for new antifungal agents. We have previously isolated a sunflower mannose-binding lectin (Helja) with antifungal activity against Candida albicans, capable of binding mannose-bearing oligosaccharides exposed on the cell surface. This work aimed to investigate the biological and biophysical basis of Helja's binding to C. albicans cell wall mannans and its influence on the fungicidal activity of the lectin. We evaluated the interaction of Helja with the cell wall mannans extracted from the isogenic parental strain (WT) and a glycosylation-defective C. albicans with altered cell wall phosphomannosylation (mnn4∆ null mutants) and investigated its antifungal effect. Helja exhibited stronger antifungal activity on the mutant strain, showing greater inhibition of fungal growth, loss of cell viability, morphological alteration, and formation of clusters with agglutinated cells. This differential biological activity of Helja was correlated with the biophysical parameters determined by solid phase assays and isothermal titration calorimetry, which demonstrated that the lectin established stronger interactions with the cell wall mannans of the mnn4∆ null mutant than with the WT strain. In conclusion, our results provide new evidence on the nature of the Helja molecular interactions with cell wall components, i.e. phosphomannan, and its impact on the antifungal activity. This study highlights the relevance of plant lectins in the design of effective antifungal therapies.


Assuntos
Antifúngicos , Candida albicans , Parede Celular , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Helianthus/química , Mananas/química , Mananas/farmacologia , Mananas/metabolismo , Testes de Sensibilidade Microbiana
3.
Proteomics ; 23(1): e2200251, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861729

RESUMO

Açaí palm (Euterpe oleracea Mart.) seeds are a rich source of mannans, which can be used to generate bioethanol or be converted to high-value D-mannose, in addition to being a source of polyphenols with beneficial health properties. Here, we present a quantitative proteome dataset of açaí seeds at four stages of development (S1, S2, S3, and S4 stages), in which 2465 high confidence proteins were identified and 524 of them show statistically different abundance profiles during development. Several enzymes involved in the biosynthesis of nucleotide-sugars were quantified, especially those dedicated to the formation of GDP-mannose, which showed an increase in abundance between stages S1 and S3. Our data suggest that linear mannans found abundantly in endosperm cell walls are initially deposited as galactomannans, and during development lose the galactosyl groups. Two isoforms of alpha-galactosidase enzymes showed significantly increased abundances in the S3 and S4 stages. Additionally, we quantified the enzymes participating in the central pathway of flavonoid biosynthesis responsible for the formation of catechin and epicatechin, which are subunits of procyanidins, the main class of polyphenols in the açaí seeds. These proteins showed the same pattern of deposition, in which higher abundances were seen in the S1 and S2 stages.


Assuntos
Euterpe , Mananas , Antioxidantes , Proteômica , Sementes/química , Polifenóis/análise , Extratos Vegetais
4.
J Sci Food Agric ; 103(15): 7529-7538, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37406160

RESUMO

BACKGROUND: Fresh-cut fruit are convenient ready-to-eat products increasingly demanded by consumers, but highly susceptible to oxidation. To increase the shelf life of these products, this industry is currently facing the challenge of finding sustainable natural preservatives capable of maintaining fresh-cut fruit quality while meeting consumers' expectations regarding health and environmental concerns. RESULTS: In this work, fresh-cut apple slices were treated with two antioxidant extracts derived from industrial by-products: a phenolic-rich extract produced from sugarcane straw (PE-SCS) and applied at 15 g L-1 , and a mannan-rich extract obtained from brewer's spent yeast (MN-BSY) applied at two concentrations: 1 and 5 g L-1 . PE-SCS, having a brown color, imparted a brownish hue to the fruit and increased the browning rate during storage, and not even the initial robust antioxidant response (high superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase activities), prevented oxidation. Fruit treated with MN-BSY extract at 5 g L-1 showed lower color loss rate and higher polyphenol oxidase inhibition, while at 1 g L-1 it showed lower firmness loss rate and lower lipid peroxidation after 6 days of storage. CONCLUSION: The results showed that PE-SCS triggers a potent antioxidant response in fresh-cut fruit and, despite it imparting a brown color to the fruit at 15 g L-1 , it may have potential for application at lower concentrations. Regarding MN-BSY, it generally decreased oxidative stress, but its effect on quality maintenance was dependent on the concentration and, thus, to confirm its potential as a fruit preservative more concentrations must be tested. © 2023 Society of Chemical Industry.


Assuntos
Malus , Saccharum , Antioxidantes , Saccharomyces cerevisiae , Mananas , Frutas , Extratos Vegetais/farmacologia
5.
Plant J ; 108(1): 7-28, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547150

RESUMO

Transglycanases remodel cell-wall polymers, having a critical impact on many physiological processes. Unlike xyloglucan endotransglucosylase (XET) activity, widely studied in land plants, very little is known about charophyte wall-modifying enzymes - information that would promote our understanding of the 'primordial' wall, revealing how the wall matrix is remodelled in the closest living algal relatives of land plants, and what changed during terrestrialisation. We conducted various in-vitro assays for wall-remodelling transglycosylases, monitoring either (a) polysaccharide-to-[3 H]oligosaccharide transglycosylation or (b) non-radioactive oligosaccharide-to-oligosaccharide transglycosylation. We screened a wide collection of enzyme extracts from charophytes (and early-diverging land plants for comparison) and discovered several homo- and hetero-transglycanase activities. In contrast to most land plants, charophytes possess high trans-ß-1,4-mannanase activity, suggesting that land plants' algal ancestors prioritised mannan remodelling. Trans-ß-1,4-xylanase activity was also found, most abundantly in Chara, Nitella and Klebsormidium. Exo-acting transglycosidase activities (trans-ß-1,4-xylosidase and trans-ß-1,4-mannosidase) were also detected. In addition, charophytes exhibited homo- and hetero-trans-ß-glucanase activities (XET, mixed-linkage glucan [MLG]:xyloglucan endotransglucosylase and cellulose:xyloglucan endotransglucosylase) despite the paucity or lack of land-plant-like xyloglucan and MLG as potential donor substrates in their cell walls. However, trans-α-xylosidase activity (which remodels xyloglucan in angiosperms) was absent in charophytes and early-diverging land plants. Transglycanase action was also found in situ, acting on endogenous algal polysaccharides as donor substrates and fluorescent xyloglucan oligosaccharides as acceptor substrates. We conclude that trans-ß-mannanase and trans-ß-xylanase activities are present and thus may play key roles in charophyte walls (most of which possess little or no xyloglucan and MLG, but often contain abundant ß-mannans and ß-xylans), comparable to the roles of XET in xyloglucan-rich land plants.


Assuntos
Carofíceas/enzimologia , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Polissacarídeos/metabolismo , Transferases/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Carofíceas/genética , Carofíceas/fisiologia , Embriófitas , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética , Mananas/metabolismo , Complexos Multienzimáticos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transferases/genética , Xilanos/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884845

RESUMO

In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, and immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-α-mannoprotein of molecular weight 4.5 × 106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure-activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells (HUVEC)) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10-100 µg/mL, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans, the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates, most likely due to a different mode of selenium binding and its higher degree of oxidation.


Assuntos
Meios de Cultura/química , Polissacarídeos Fúngicos/análise , Selênio/química , Cogumelos Shiitake/metabolismo , Aminoácidos/análise , Sequência de Carboidratos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Polissacarídeos Fúngicos/isolamento & purificação , Polissacarídeos Fúngicos/farmacologia , Humanos , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos , Cogumelos Shiitake/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
7.
Prep Biochem Biotechnol ; 51(9): 881-891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439094

RESUMO

Mannanases catalyze the cleavage of ß-1,4-mannosidic linkages in mannans and have various applications in different biotechnological industries. In this study, a new ß-mannanase from Verrucomicrobiae DG1235 (ManDG1235) was biochemically characterized and its enzymatic properties were revealed. Amino acid alignment indicated that ManDG1235 belonged to glycoside hydrolase family 26 and shared a low amino acid sequence identity to reported ß-mannanases (up to 50% for CjMan26C from Cellvibrio japonicus). ManDG1235 was expressed in Escherichia coli. Purified ManDG1235 (rManDG1235) exhibited the typical properties of cold-active enzymes, including high activity at low temperature (optimal at 20 °C) and thermal instability. The maximum activity of rManDG1235 was achieved at pH 8, suggesting that it is a mildly alkaline ß-mannanase. rManDG1235 was able to hydrolyze a variety of mannan substrates and was active toward certain types of glucans. A structural model that was built by homology modeling suggested that ManDG1235 had four mannose-binding subsites which were symmetrically arranged in the active-site cleft. A long loop linking ß2 and α2 as in CjMan26C creates a steric border in the glycone region of active-site cleft which probably leads to the exo-acting feature of ManDG1235, for specifically cleaving mannobiose from the non-reducing end of the substrate.


Assuntos
Proteínas de Bactérias , Temperatura Baixa , Modelos Moleculares , Verrucomicrobia , beta-Manosidase , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato , Verrucomicrobia/enzimologia , Verrucomicrobia/genética , beta-Manosidase/química , beta-Manosidase/genética
8.
Mycoses ; 62(7): 576-583, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31034703

RESUMO

False positivity of antigen immunoassays used as an early diagnostic tool to detect invasive fungal infections is known. Interpretation of the assay needs the identification of sources which could affect the specificity of the test. We focused on the influence of parenteral nutrition (PN) and piperacillin-tazobactam (TZP) on fungal immunoassays. Measurable amounts of Candida antigen mannan were detected in several compounds of PN and TZP in a previous in vitro study. In the current study, 84 patients undergoing allogeneic haematopoietic cell transplantation receiving either TZP, PN or both were monitored with Aspergillus and Candida antigen assay. Six patients were analysed closer in a kinetic analysis with more frequent blood sampling to detect mannan. PN in diverse compositions as well as TZP did not increase significantly the amount of mannan and the Aspergillus antigen in serum. We could not confirm the positive results of the in vitro study. Physicians should be aware that mannan antigenemia due to drug infusion could be a transient issue and should be considered in the interpretation of fungal immunoassays, although we could not find clinically relevant effects on mannan levels.


Assuntos
Antibacterianos/administração & dosagem , Antígenos de Fungos/sangue , Candidíase Invasiva/diagnóstico , Reações Falso-Positivas , Aspergilose Pulmonar Invasiva/diagnóstico , Nutrição Parenteral , Combinação Piperacilina e Tazobactam/administração & dosagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Transplante Homólogo/efeitos adversos , Adulto Jovem , Inibidores de beta-Lactamases/administração & dosagem
9.
Planta ; 247(3): 649-661, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29164367

RESUMO

MAIN CONCLUSION: Mannans but not endo-ß-mannanases are mainly found in the mucilage layer of two Brassicaceae seeds. Nonetheless, mannanase mobilization from inner to outer seed layers cannot be ruled out. The contribution of endo-ß-mannanase (MAN) genes to the germination of the wild-type Sisymbrium officinale and cultivated Brassica rapa (Brassicaceae) species has been explored. In both species, mannans have been localized to the imbibed external seed coat layer (mucilage) by fluorescence immunolocalization and MAN enzymatic activity increases in seeds as imbibition progresses, reaching a peak before 100% germination is achieved. The MAN gene families have been annotated and the expression of their members analyzed in vegetative and reproductive organs. In S. officinale and B. rapa, MAN2, MAN5, MAN6, and MAN7 transcripts accumulate upon seed imbibition. SoMAN7 is the most expressed MAN gene in S. officinale germinating seeds, as occurs with its ortholog in Arabidopsis thaliana, but in B. rapa, the most abundant transcripts are BrMAN2 and BrMAN5. These genes (MAN2, MAN5, MAN6, and MAN7) are localized, by mRNA in situ hybridization, to the micropylar at the endosperm layer and to the radicle in S. officinale, but in B. rapa, these mRNAs are faintly found to the micropylar living seed coat layer and are mainly present at the radicle tip and the vascular bundles. If the domestication process undergone by B. rapa is responsible for these different MAN expression patterns, upon germination remains to be elucidated. Since mannans and MAN genes are not spatially distributed in the same seed tissues, a movement of MAN enzymes that are synthesized with typical signal peptides from the embryo tissues to the mucilage layer (via apoplastic space) is necessary for the mannans to be hydrolyzed.


Assuntos
Germinação , Mananas/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Brassicaceae/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiologia , Germinação/fisiologia , Manosidases/metabolismo , Filogenia , Sementes/enzimologia , Sementes/metabolismo , Sementes/fisiologia
10.
Appl Microbiol Biotechnol ; 102(23): 10027-10041, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30215129

RESUMO

Degradation of mannans is a key process in the production of foods and prebiotics. ß-Mannanase is the key enzyme that hydrolyzes 1,4-ß-D-mannosidic linkages in mannans. Heterogeneous expression of ß-mannanase in Pichia pastoris systems is widely used; however, Saccharomyces cerevisiae expression systems are more reliable and safer. We optimized ß-mannanase gene from Aspergillus sulphureus and expressed it in five S. cerevisiae strains. Haploid and diploid strains, and strains with constitutive promoter TEF1 or inducible promoter GAL1, were tested for enzyme expression in synthetic auxotrophic or complex medium. Highest efficiency expression was observed for haploid strain BY4741 integrated with ß-mannanase gene under constitutive promoter TEF1, cultured in complex medium. In fed-batch culture in a fermentor, enzyme activity reached ~ 24 U/mL after 36 h, and production efficiency reached 16 U/mL/day. Optimal enzyme pH was 2.0-7.0, and optimal temperature was 60 °C. In studies of ß-mannanase kinetic parameters for two substrates, locust bean gum galactomannan (LBG) gave Km = 24.13 mg/mL and Vmax = 715 U/mg, while konjac glucomannan (KGM) gave Km = 33 mg/mL and Vmax = 625 U/mg. One-hour hydrolysis efficiency values were 57% for 1% LBG, 74% for 1% KGM, 39% for 10% LBG, and 53% for 10% KGM. HPLC analysis revealed that the major hydrolysis products were the oligosaccharides mannose, mannobiose, mannotriose, mannotetraose, mannopentaose, and mannohexaose. Our findings show that this ß-mannanase has high efficiency for hydrolysis of mannans to mannooligosaccharides, a type of prebiotic, suggesting strong potential application in food industries.


Assuntos
Aspergillus/enzimologia , Mananas/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Manosidase/metabolismo , Técnicas de Cultura Celular por Lotes , DNA Fúngico/genética , Galactanos/química , Galactoquinase/genética , Galactoquinase/metabolismo , Galactose/análogos & derivados , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Hidrólise , Microbiologia Industrial , Mananas/química , Manose/metabolismo , Oligossacarídeos/metabolismo , Pichia , Gomas Vegetais/química , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Trissacarídeos/metabolismo , beta-Manosidase/genética
11.
Mycoses ; 61(12): 931-937, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30107071

RESUMO

BACKGROUND: Screening for Aspergillus (Asp-AG) and Candida antigen (Ca-AG) with immunoassays is established for stem cell recipients at high risk for invasive fungal infections (IFI). While parenteral nutrition (PN) will be applied in case of complications leading to insufficient alimentation, piperacillin-tazobactam (TZP) is started at the onset of febrile neutropenia. OBJECTIVES: The aim of this study was to investigate drug-laboratory interactions between PN and TZP and both immunoassays which could affect the specificity of the assays and lead to the false assumption of an IFI. METHODS: Batches of TZP and PN were tested with both assays in vitro. In total, 380 samples of 83 batches were analysed. RESULTS: None of the examined preparations were tested positive with Asp-AG assay. Measurable amounts of Ca-AG were detected in a lipid emulsion, two different trace element supplements, a fat-soluble vitamin preparation and all tested brands of TZP. CONCLUSIONS: We conclude that false positivity of Asp-AG assay due to TZP and PN does not occur. Cross reactions with Ca-AG assay have been detected in some preparations. The in vivo relevance of Ca-AG positivity has to be reviewed in further studies considering an effect of dilution. Physicians should be aware of a possible cross reaction with Ca-AG assays which could lead to false-positive results.


Assuntos
Antibacterianos/química , Antígenos de Fungos/análise , Aspergillus/química , Candida/química , Soluções de Nutrição Parenteral/química , Combinação Piperacilina e Tazobactam/química , Inibidores de beta-Lactamases/química , Candidíase Invasiva/diagnóstico , Reações Falso-Positivas , Humanos , Aspergilose Pulmonar Invasiva/diagnóstico , Testes Sorológicos/métodos
12.
Zhonghua Jie He He Hu Xi Za Zhi ; 41(2): 100-104, 2018 Feb 12.
Artigo em Chinês | MEDLINE | ID: mdl-29429215

RESUMO

Objective: To improve the understanding of chronic pulmonary aspergillosis (CPA) by analyzing the clinical manifestations, imaging and pathological features, diagnosis, treatment and prognosis of this disease. Methods: Cases of CPA, proven by microbiological evidence based on pathological study in Fuzhou General Hospital of the People's Liberation Army and Affiliated Fuzhou City First Hospital of Fijian Medical University from January 2006 to October 2016 were retrospectively analyzed. Results: The patients consisted of 17 males and 12 females, aged 24 to 75 years, mean (42±16) years. The underlying disorders included post-tuberculosis infection (n=11), bronchiectasis (n=8), chronic obstructive pulmonary disease (n=3) and diabetes mellitus (n=2). The main clinical symptoms included productive cough (n=25), chronic sputum production (n=18) and hemoptysis (n=15). Serum GM antigen tests were performed in 19 cases, and the result was positive in 12 patients. BALF GM antigen tests were performed in 2 cases, both of which were positive. Chest CT showed that the lesions were located predominantly in the upper lobes (n=24). Single cavity with interior irregular intraluminal material (n=16) and multiple cavities with interior irregular intraluminal material (n=10) were the most frequent CT findings, while the "air crescent sign" was found in 13 cases. In the 22 patients who underwent surgical treatment, Aspergillus filaments were found in the cavity (n=20) or the bronchi (n=2) of lung samples, and histological examination didn't show tissue invasion by fungi. Surgical therapy was performed in 22 patients, with complete remission in 19 cases, and death in 3 cases. Anti-fungal therapy was administered in 6 patients, with partial remission in 4, and stable disease in 2 cases. One patient was not treated. Conclusions: CPA is more frequently seen in patients with underlying chronic pulmonary diseases. The common CT findings are single or multiple cavities with interior irregular intraluminal materials. Aspergillus filament in the cavity or bronchi of lung samples, without parenchymal invasion, is the proof of CPA. The surgical cure rate for simple aspergilloma and aspergillus nodule is high, while the risk of operation for chronic cavitary disease is high. GM antigen test may be an evidence for diagnosing CPA.


Assuntos
Aspergillus/isolamento & purificação , Hemoptise , Aspergilose Pulmonar/diagnóstico , Adulto , Idoso , China , Feminino , Humanos , Pulmão , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
13.
Arch Anim Nutr ; 70(1): 33-43, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26635142

RESUMO

A study was conducted to determine the efficacy of ß-mannanase supplementation to a diet based on corn and soya bean meal (SBM) on growth performance, nutrient digestibility, blood urea nitrogen (BUN), faecal coliforms and lactic acid bacteria, and noxious gas emission in growing pigs. A total of 140 pigs [(Landrace × Yorkshire) × Duroc; average body weight 25 ± 3 kg] were randomly allotted to a 2 × 2 factorial arrangement with dietary treatments consisting of hulled or dehulled SBM without or with supplementation of 400 U ß-mannanase/kg. During the 6 weeks of experimental feeding, ß-mannanase supplementation had no effect on body weight gain, feed intake and gain:feed (G:F) ratio. Compared with dehulled SBM, feeding hulled SBM caused an increased feed intake of pigs in the entire trial (p = 0.05). The G:F ratio was improved in pigs receiving dehulled SBM (p < 0.05). Dietary treatments did not influence the total tract digestibility of dry matter, nitrogen and gross energy. Enzyme supplementation reduced (p < 0.05) the population of faecal coliforms and tended to reduce the NH3 concentration after 24 h of fermentation in a closed box containing faecal slurry. Feeding hulled SBM tended to reduce NH3 emission on days 3 and 5 of fermentation. In conclusion, mannanase supplementation had no influence on growth performance and nutrient digestibility but showed a positive effect on reducing coliform population and tended to reduce NH3 emission. Dehulled SBM increased G:F ratio and hulled SBM tended to reduce NH3 emission.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Digestão/fisiologia , Enterobacteriaceae/fisiologia , Gases/metabolismo , Lactobacillales/fisiologia , Suínos/fisiologia , beta-Manosidase/metabolismo , Poluentes Atmosféricos/metabolismo , Ração Animal/análise , Animais , Fenômenos Fisiológicos Bacterianos , Nitrogênio da Ureia Sanguínea , Dieta/veterinária , Suplementos Nutricionais/análise , Enterobacteriaceae/crescimento & desenvolvimento , Fezes/química , Fezes/microbiologia , Feminino , Lactobacillales/crescimento & desenvolvimento , Masculino , Distribuição Aleatória , Glycine max , Suínos/crescimento & desenvolvimento
14.
Int J Biol Macromol ; 267(Pt 2): 131663, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636760

RESUMO

Palm seedlings are visually selected from mature fruits in a slow process that leads to nonuniform germination and high embryo mortality. In this study, we determined the levels of monosaccharides, their crystallinity, and their role in the formation of Euterpe edulis endosperm during seed maturation. Seeds harvested from 108 to 262 days after anthesis (DAA) were analyzed morphologically, physiologically, and chemically to measure soluble and insoluble lignins, ashes, structural carbohydrates, degree of crystallinity, and endo-ß-mannanase. The seeds achieved maximum germination and vigor at 164 DAA. During the early stages, only compounds with a low structural order were formed. The contents of soluble and insoluble lignins, ashes, glucans, and galactans decreased during maturation. Those of mannans, the main structural carbohydrate in the endosperm, increased along with the degree of crystallinity, as suggested by a mannan-I-type X-ray diffraction pattern. Similarly, endo-ß-mannanase activity peaked at 262 DAA. The superior physiological outcome of seeds and seedlings at 164 DAA implies a 98-day shorter harvesting time. The state of mannans during seed maturation could be used as a marker to improve seedling production by E. edulis.


Assuntos
Arecaceae , Germinação , Mananas , Sementes , Sementes/crescimento & desenvolvimento , Sementes/química , Mananas/química , Arecaceae/química , Arecaceae/crescimento & desenvolvimento , Árvores , Lignina/química , Lignina/metabolismo , Endosperma/química , Endosperma/metabolismo , Plântula/crescimento & desenvolvimento
15.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256762

RESUMO

Gravitropism is the plant organ bending in response to gravity. Gravitropism, phototropism and sufficient mechanical strength define the optimal position of young shoots for photosynthesis. Etiolated wild-type Arabidopsis seedlings grown horizontally in the presence of sucrose had a lot more upright hypocotyls than seedlings grown without sucrose. We studied the mechanism of this effect at the level of cell wall biomechanics and biochemistry. Sucrose strengthened the bases of hypocotyls and decreased the content of mannans in their cell walls. As sucrose is known to increase the gravitropic bending of hypocotyls, and mannans have recently been shown to interfere with this process, we examined if the effect of sucrose on shoot gravitropism could be partially mediated by mannans. We compared cell wall biomechanics and metabolomics of hypocotyls at the early steps of gravitropic bending in Col-0 plants grown with sucrose and mannan-deficient mutant seedlings. Sucrose and mannans affected gravitropic bending via different mechanisms. Sucrose exerted its effect through cell wall-loosening proteins, while mannans changed the walls' viscoelasticity. Our data highlight the complexity of shoot gravitropism control at the cell wall level.

16.
Curr Drug Targets ; 25(4): 261-277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375843

RESUMO

Plant-based phytochemicals, including flavonoids, alkaloids, tannins, saponins, and other metabolites, have attracted considerable attention due to their central role in synthesizing nanomaterials with various biomedical applications. Hemicelluloses are the second most abundant among naturally occurring heteropolymers, accounting for one-third of all plant constituents. In particular, xylans, mannans, and arabinoxylans are structured polysaccharides derived from hemicellulose. Mannans and xylans are characterized by their linear configuration of ß-1,4-linked mannose and xylose units, respectively. At the same time, arabinoxylan is a copolymer of arabinose and xylose found predominantly in secondary cell walls of seeds, dicotyledons, grasses, and cereal tissues. Their widespread use in tissue engineering, drug delivery, and gene delivery is based on their properties, such as cell adhesiveness, cost-effectiveness, high biocompatibility, biodegradability, and low immunogenicity. Moreover, it can be easily functionalized, which expands their potential applications and provides them with structural diversity. This review comprehensively addresses recent advances in the field of biomedical applications. It explores the potential prospects for exploiting the capabilities of mannans and xylans in drug delivery, gene delivery, and tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos , Mananas , Engenharia Tecidual , Xilanos , Xilanos/química , Humanos , Engenharia Tecidual/métodos , Mananas/química , Técnicas de Transferência de Genes , Animais
17.
Int J Vet Sci Med ; 12(1): 11-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487499

RESUMO

Stress in poultry production is energy-demanding. Nucleotides and yeast cell-wall products are essential nutrients for broiler performance, gut function, and immune response. Antibiotics, like florfenicol, negatively affect the immune system. A total of 600 one-d-old broiler chickens (Cobb-500) were weighed and randomly allotted into four groups with three replicates each. The control group (G1) received the basal diet, G2 received a diet supplemented with a combination of nucleotides and Saccharomyces cerevisiae derivatives (250 g/Ton), G3 received the basal diet and medicated with florfenicol (25 mg/Kg body weight) in drinking water for 5 days, while G4 received a combination of nucleotides and Saccharomyces cerevisiae-derivatives (250 g/Ton) and medicated with florfenicol in drinking water. Growth performance criteria were recorded weekly. Blood, intestinal contents, small-intestine sections, and litter samples were collected to measure birds' performance, carcass yields, leukocytic counts, antioxidant capacity, antibody titres, phagocytic index, caecal Clostridia, intestinal histomorphometry, and litter hygiene. Nucleotide-supplemented groups (G2 and G4) revealed significant (p ≤ 0.05) improvements in feed conversion, and body weight, but not for carcass yields in comparison to the control. Dietary nucleotides in G2 elevated blood total proteins, leucocytic count, antioxidant capacity, and phagocytic index, while they lowered blood lipids and litter moisture and nitrogen (p ≤ 0.05). Dietary nucleotides in G4 ameliorated the immunosuppressive effect of florfenicol (p ≤ 0.05) indicated in reducing caecal Clostridia, improving duodenal and ileal villi length, and increasing blood albumin and globulin levels, and phagocytosis%. Supplementing diets with nucleotides and yeast products has improved the immune system and provided a healthier gut for broilers.

18.
Iran Biomed J ; 27(5): 320-25, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525429

RESUMO

Background: Mannoproteins, mannose-glycosylated proteins, play an important role in biological processes and have various applications in industries. Several methods have been already used for the extraction of mannoproteins from yeast cell-wall. The aim of this study was to evaluate the extraction and deproteinization of mannan oligosaccharide from the Kluyveromyces (K.) marxianus mannoprotein. Methods: To acquire crude mannan oligosaccharides, K. marxianus mannoproteins were deproteinized by the Sevage, trichloroacetic acid, and hydrochloric acid (HCL) methods. Total nitrogen, crude protein content, fat, carbohydrate and ash content were measured according to the monograph prepared by the meeting of the Joint FAO/WHO Expert Committee and standard. Mannan oligosaccharide loss, percentage of deproteinization, and chemical composition of the product were assessed to check the proficiency of different methods. Results: Highly purified (95.4%) mannan oligosaccharide with the highest deproteinization (97.33 ± 0.4%) and mannan oligosaccharide loss (25.1 ± 0.6%) were obtained following HCl method. Conclusion: HCl, was the most appropriate deproteinization method for the removal of impurities. This preliminary data will support future studies to design scale-up procedures.


Assuntos
Kluyveromyces , Mananas , Mananas/química , Mananas/metabolismo , Kluyveromyces/química , Kluyveromyces/metabolismo , Glicoproteínas de Membrana/metabolismo , Oligossacarídeos/metabolismo
19.
J Agric Food Chem ; 71(6): 2667-2683, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724217

RESUMO

A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.


Assuntos
Ingredientes de Alimentos , Ingredientes de Alimentos/análise , Madeira/química , Polissacarídeos/química , Celulose/química
20.
Front Immunol ; 14: 1158390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304290

RESUMO

With the rising awareness of antimicrobial resistance, the development and use of functional feed additives (FFAs) as an alternative prophylactic approach to improve animal health and performance is increasing. Although the FFAs from yeasts are widely used in animal and human pharma applications already, the success of future candidates resides in linking their structural functional properties to their efficacy in vivo. Herein, this study aimed to characterise the biochemical and molecular properties of four proprietary yeast cell wall extracts from S. cerevisiae in relation to their potential effect on the intestinal immune responses when given orally. Dietary supplementation of the YCW fractions identified that the α-mannan content was a potent driver of mucus cell and intraepithelial lymphocyte hyperplasia within the intestinal mucosal tissue. Furthermore, the differences in α-mannan and ß-1,3-glucans chain lengths of each YCW fraction affected their capacity to be recognised by different PRRs. As a result, this affected the downstream signalling and shaping of the innate cytokine milieu to elicit the preferential mobilisation of effector T-helper cell subsets namely Th17, Th1, Tr1 and FoxP3+-Tregs. Together these findings demonstrate the importance of characterising the molecular and biochemical properties of YCW fractions when assessing and concluding their immune potential. Additionally, this study offers novel perspectives in the development specific YCW fractions derived from S. cerievisae for use in precision animal feeds.


Assuntos
Saccharomyces cerevisiae , Peixe-Zebra , Animais , Humanos , Mananas/farmacologia , Imunidade Inata , Intestinos , Mucosa Intestinal , Parede Celular , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA