RESUMO
A novel approach has been developed for the synthesis of bicyclic ß, γ-fused bicyclic γ-ureasultams containing two consecutive chiral centers through an intramolecular Mannich and aza-Michael addition cascade of alkenyl sulfamides. The straightforward practical procedure and readily available starting materials enable the synthesis of variously substituted ureasultams. In addition, bicyclic γ-ureasultams is a class of potential biotin analogues.
RESUMO
A highly enantioselective Mannich reaction of biphenyl-bridged seven-membered cyclic N-sulfonylimines with methyl alkyl ketones is disclosed in this study. The reaction was performed under organocatalysis by using a quinine-derived primary amine as the catalyst in combination with a Brønsted acid as the co-catalyst. High yields (up to 89 %) and excellent enantioselectivities (up to 97 %â ee) were observed. For methyl alkyl ketones containing a larger alkyl substituent, specific regioselective addition to the C=N bond is favored at the methyl group. On the contrary, ketones containing a smaller alkyl substituent or hydroxyacetone substrates gave major syn selective Mannich products at the methylene group.
RESUMO
The search for novel anticancer drugs is essential to expand treatment options, overcome drug resistance, reduce toxicity, promote innovation, and tackle the economic impact. The importance of these studies lies in their contribution to advancing cancer research and enhancing patient outcomes in the battle against cancer. Here, we developed new asymmetric hybrids containing two different naphthoquinones linked by a 1,2,3-1H-triazole nucleus, which are potential new drugs for cancer treatment. The antitumor activity of the novel compounds was tested using the breast cancer cell lines MCF-7 and MDA-MB-231, using the non-cancer cell line MCF10A as control. Our results showed that two out of twenty-two substances tested presented potential antitumor activity against the breast cancer cell lines. These potential drugs, named here 12g and 12h were effective in reducing cell viability and promoting cell death of the tumor cell lines, exhibiting minimal effects on the control cell line. The mechanism of action of the novel drugs was assessed revealing that both drugs increased reactive oxygen species production with consequent activation of the AMPK pathway. Therefore, we concluded that 12g and 12h are novel AMPK activators presenting selective antitumor effects.
Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Feminino , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
Two series of C-Mannich base derivatives were synthesized and evaluated through the reaction of formaldehyde, two thiazolo-pyrimidine compounds, and various 2°-amines. The chemical structures and inherent properties of the synthesized compounds were authenticated using a variety of spectroscopic techniques. The aseptic bactericidal potential of the compounds was assessed alongside five common bacterial microbes, with Ampicillin employed as the reference drug. Compounds 9b and 9d demonstrated comparable antibacterial activity to ampicillin against Bacillus subtilis and Bacillus megaterium, respectively, at 100 µg/mL. Furthermore, compounds 9f and 10f exhibited noteworthy action against Staphylococcus aureus (MIC: 250 µg/mL). Compounds 10b and 10f displayed excellent efficacy versus Escherichia coli, boasting (MIC: 50 µg/mL). Molecular docking studies elucidated the necessary connections and energies of molecular entities with the E. coli DNA gyrase B enzyme, a pivotal target in bacterial DNA replication. Further thermodynamic stability of the ligand-receptor complex of 10b and 10f were further validated though 200 ns molecular dynamics simulation. The findings highlight the potential of these synthesized derivatives as effective antibacterial agents and provide valuable insights into their mechanism of action.
Assuntos
Antibacterianos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pirimidinas , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Bacillus subtilis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , DNA Girase/metabolismo , DNA Girase/químicaRESUMO
Cyclopenta[g]quinolones of type 4 were designed with the aim to bioisosterically replace the phenol of potent GluN2B ligands such as ifenprodil and Ro 25-6981 by the quinolone system and to restrict the conformational flexibility of the aminopropanol substructure in a cyclopentane system. The designed ligands were synthesized in an eight-step sequence starting with terephthalaldehyde (5). Key steps pf the synthesis were the intramolecular Friedel-Crafts acylation of propionic acids 10 to yield the cyclopenta[g]quinolinediones 11 and the Mannich reaction of diketone 11a followed by conjugate addition at the α,ß-unsaturated ketone 12a. Although the quinolones 13a, 15a, and 16a contain an H-bond donor group (secondary lactam) as ifenprodil and Ro 25-6981, they show only moderate GluN2B affinity (Ki > 410 nM). However, the introduction of lipophilic substituents at the quinolone N-atom resulted in more than 10-fold increased GluN2B affinity of the benzyl and benzyloxymethyl derivatives cis-13c (Ko = 36 nM) and 13e (Ko = 27 nM). All compounds are selective over the phencyclidine (PCP) binding site of the N-methyl-D-aspartate (NMDA) receptor. The benzyl derivative 13c showed six- and threefold selectivity over σ1 and σ2 receptors, respectively.
Assuntos
Quinolonas , Receptores de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Fenóis/farmacologia , Fenóis/química , Fenóis/síntese química , Animais , Ligantes , Relação Dose-Resposta a DrogaRESUMO
INTRODUCTION: The stem of the plant species Derris scandens (Roxb.) Benth. (DS) contains genistein-7-O-[α-rhamnopyranosyl-(1â6)]-ß-glucopyranoside (GTG), which is a unique marker. Previous analyses of GTG using antibody-based immunoassays were compromised because of their high cross-reactivity with structurally related compounds of DS, thereby limiting their applicability in DS quality control. OBJECTIVE: Conjugation of GTG with carrier proteins was achieved using the Mannich reaction to produce a highly specific monoclonal antibody (mAb) targeting GTG (anti-GTG mAb). METHODS: The anti-GTG mAb was generated using hybridoma technology and characterised using an indirect competitive enzyme-linked immunosorbent assay (icELISA). Both lateral-flow immunoassay (LFIA) and icELISA were developed to detect and quantify GTG in DS raw materials and associated products. RESULTS: icELISA using the anti-GTG mAb showed 100% specificity for GTG, with only 1.77% cross-reactivity with genistin and less than 0.01% cross-reactivity with other compounds. icELISA demonstrated a linear range for GTG determination between 62.5 and 2000 ng/mL. The limits of detection (LOD) and quantification were 49.68 and 62.50 ng/mL for GTG, respectively. The precision of the analysis ranged from 1.28% to 4.20% for repeatability and from 1.03% to 7.05% for reproducibility. The accuracy of the analysis ranged from 101.97% to 104.01% for GTG recovery. GTG levels determined via icELISA were consistent with those confirmed via high-performance liquid chromatography (HPLC) (R2 = 0.9903). Moreover, the LOD of LFIA for GTG was 500 ng/mL. CONCLUSION: Immunoassays utilising specific anti-GTG mAbs were successfully developed, including LFIA for rapid GTG detection and icELISA for GTG quantification.
Assuntos
Anticorpos Monoclonais , Derris , Genisteína/análise , Reprodutibilidade dos Testes , Ensaio de Imunoadsorção Enzimática/métodos , ImunoensaioRESUMO
Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives.
Assuntos
Elétrons , Alquilação , Álcoois/química , Catálise , Hidrocarbonetos Aromáticos/químicaRESUMO
Hollongdione is the first recorded example of the occurrence of a dammarane hexanor-triterpene in nature possessing antiviral and cytotoxic activity. Its simple one-stage transformation into compounds with terminal alkyne and vinyl chloride fragments via the interaction with phosphorus halides is reported. The copper(I)-catalyzed Mannich reaction of 3-oxo-22,23,24,25,26,27-hexanor-dammar-20(21)-in 3 led to a series of aminomethylated products, while 17-carboxylic acid was obtained by ozone oxidation of 3-oxo-22,23,24,25,26,27-hexanor-dammar-20-chloro-20(21)-en 4; the following direct amidation of the latter has been developed. The structures of all new molecules were established by spectroscopic studies that included 2D NMR correlation methods; the molecular structures of compounds 2-5 were determined by X-ray analysis.
Assuntos
Alcinos , Ácidos Carboxílicos , Bases de Mannich , Cloreto de Vinil , Alcinos/química , Ácidos Carboxílicos/química , Bases de Mannich/química , Cloreto de Vinil/química , Triterpenos/química , Estrutura Molecular , Catálise , Espectroscopia de Ressonância MagnéticaRESUMO
An efficient and practical organocatalyzed asymmetric Mannich/cyclization tandem reaction strategy of 2-benzothiazolimines and 2-isothiocyanato-1-indanones was developed, and novel spirocyclic compounds containing benzothiazolimine and indanone scaffolds were obtained. This chiral thiourea-catalyzed Mannich/cyclization tandem reaction offers chiral spirocyclic compounds with continuous tertiary and quaternary stereocenters in good to high yields (up to 90%) with excellent diastereoselectivities (up to >20:1 dr) and enantioselectivities (up to 98% ee) at -18 °C. Additionally, the scaled-up synthesis was also performed with retained yield and stereoselectivity, and a reaction mechanism was also proposed.
RESUMO
An efficient cascade cyclization strategy was developed to synthesize aminobenzofuran spiroindanone and spirobarbituric acid derivatives utilizing 2-bromo-1,3-indandione, 5-bromo-1,3-dimethylbarbituric acid, and ortho-hydroxy α-aminosulfones as substrates. Under the optimized reaction conditions, the corresponding products were obtained with high efficiency, exceeding 95% and 85% yields for the respective derivatives. This protocol demonstrates exceptional substrate versatility and robust scalability up to the Gram scale, establishing a stable platform for the synthesis of 3-aminobenzofuran derivative. The successful synthesis paves the way for further biological evaluations with potential implications in scientific research.
RESUMO
The reaction between glycine-type aminonaphthol derivatives substituted with 2- or 1-naphthol and indole or 7-azaindole has been tested. Starting from 2-naphthol as a precursor, the reaction led to the formation of ring-closed products, while in the case of a 1-naphthol-type precursor, the desired biaryl ester was isolated. The synthesis of a bifunctional precursor starting from 5-chloro-8-hydroxyquinoline, morpholine, and ethyl glyoxylate via modified Mannich reaction is reported. The formed Mannich base 10 was subjected to give bioconjugates with indole and 7-azaindole. The effect of the aldehyde component and the amine part of the Mannich base on the synthetic pathway was also investigated. In favor of having a preliminary overview of the structure-activity relationships, the derivatives have been tested on cancer and normal cell lines. In the case of bioconjugate 16, as the most powerful scaffold in the series bearing indole and a 5-chloro-8-hydroxyquinoline skeleton, a potent toxic activity against the resistant Colo320 colon adenocarcinoma cell line was observed. Furthermore, this derivative was selective towards cancer cell lines showing no toxicity on non-tumor fibroblast cells.
Assuntos
Antineoplásicos , Indóis , Humanos , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Oxiquinolina/química , Oxiquinolina/farmacologia , Metano/química , Metano/análogos & derivados , Estrutura Molecular , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
Covalent polymerization of organic molecules into crystalline one-dimensional (1D) polymers is effective for achieving desired thermal, optical, and electrical properties, yet it remains a persistent synthetic challenge for their inherent tendency to adopt amorphous or semicrystalline phases. Here we report a strategy to synthesize crystalline 1D covalent organic frameworks (COFs) composing quasi-conjugated chains with benzoxazine linkages via the one-pot Mannich reaction. Through [4+2] and [2+2] type Mannich condensation reactions, we fabricated stoichiometric and sub-stoichiometric 1D covalent polymeric chains, respectively, using doubly and singly linked benzoxazine rings. The validity of their crystal structures has been directly visualized through state-of-the-art cryogenic low-dose electron microscopy techniques. Post-synthetic functionalizations of them with a chiral MacMillan catalyst produce crystalline organic photocatalysts that demonstrated excellent catalytic and recyclable performance in light-driven asymmetric alkylation of aldehydes, affording up to 94 % enantiomeric excess.
RESUMO
Historically, the piperazine moiety has been demonstrated to possess pharmacophoric properties, and has subsequently been incorporated in many drugs that have antitumor, antimalarial, antiviral, antibacterial and antifungal properties. Derivatives of eugenol and dihydroeugenol have also been reported as being bioactive compounds. This study reports the synthesis of a range of eugenol/dihydroeugenol - piperazine derivatives which have been tested as antimicrobial compounds against Gram positive, Gram negative and rapid-growing mycobacteria (RGM). The rationale employed in the design of the structural pattern of these new derivatives, provides useful insights into the structure-activity relationships (SAR) of the series. Antimicrobial activity tests were extremely encouraging, with the majority of the synthesised compounds being more active than eugenol and dihydroeugenol starting materials. The antimicrobial potential was most notable against the Gram-negative species K. pneumoniae and P. aeruginosa, but there was also significant performance against the Gram-positive strains S. epidermidis and S. aureus and the Rapidly Growing Mycobacteria (RGM) strains tested. Tests using the synthesised compounds against multidrug-resistance clinical (MDR) isolates also showed high activity. The biofilm inhibition tests using M. fortuitum showed that all evaluated derivatives were able to inhibit biofilm formation even at low concentrations. In terms of structural-activity relationships; the results generated by this study demonstrate that the compounds with bulky substituents on the piperazine subunit were much more active than those with less bulky groups, or no groups. Importantly, the derivatives with a sulfonamide side chain were the most potent compounds. A further observation was that those compounds with a para-substituted benzenesulfonamide ring stand out, regardless of whether this substituent is a donor or an electron-withdrawing group.
Assuntos
Anti-Infecciosos , Eugenol , Eugenol/farmacologia , Piperazina/farmacologia , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Micobactérias não TuberculosasRESUMO
The crotylation reactions of chiral α-F, α-OBz and α-OH aldehydes under Petasis-borono-Mannich conditions using (E)- or (Z)-crotylboronates and primary amines resulted in γ-addition products in high dr and high er. α-F and α-OBz aldehydes gave 1,2-anti-2,3-syn and 1,2-anti-2,3-anti, products, respectively while an α-OH aldehyde gave 1,2-syn-2,3-syn products. The stereochemical outcomes of reactions of the former aldehydes can be explained using a six-membered ring transition state (TS) model in which a Cornforth-like conformation around the imine intermediate is favoured resulting in 1,2-anti products. The 2,3-stereochemical outcome is dependent upon the geometry of the crotylboronate. These TS models were also supported by DFT calculations. The stereochemical outcomes of reactions employing an α-OH aldehyde can be rationalised as occurring via an open-TS involving H-bonding in the imine intermediate between the α-OH group and the imine N atom. Representative products were converted to highly functionalized 1,2,3,6-tetrahydropyridines and 3H-oxazolo[3,4-a]pyridine-3-ones which will be valuable scaffolds in synthesis.
RESUMO
Stereoselective construction of unprotected ß-amino acids is a significant challenge owing to the lack of methods for the catalytic generation of highly enantioenriched carboxylic acid enolates. In this study, a novel copper-catalyzed diastereo- and enantioselective reductive Mannich-type reaction of α,ß-unsaturated carboxylic acids was developed, which provides a direct and scalable synthetic method for enantioenriched ß2,3,3 -amino acids with vicinal stereogenic centers. The protocol features inâ situ generation of transiently protected carboxylic acids by a hydrosilane and their diastereo- and enantioselective reductive coupling with ketimines. The synthetic utility of this process was demonstrated by a gram-scale reaction and the transformation of ß-amino acids.
RESUMO
Petasis aryl and allyl borations were accomplished using substituted ninhydrins, boronic acids or 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 1,2-aminophenols in Hexafluoroisopropanol (HFIP) without any catalysts to synthesize different aryl and allyl derivatives of ninhydrins. The nature of substitution in the boronic acids and 1,2-amino phenols was the key factor in determining the diastereo-regioselectivity and the type of product distributions. The products were isolated and characterized by HMBC, HSQC, 1H, 13C NMR experiments and X-ray single crystallographic analysis. A probable reaction pathway involves in situ formation of acyclic and cyclic ninhydrin-amino alcohol adducts, with the positioned hydroxyl group determining the stereo-regioselective outcome via tetracoordinated boron intermediates. A metal free diastereo- and regioselective Petasis aryl and allyl boration of ninhydrins.
Assuntos
Ácidos Borônicos , Ninidrina , Estereoisomerismo , Ácidos Borônicos/química , Fenóis/químicaRESUMO
The Mannich reaction is commonly used to introduce N atoms into compound molecules and is thus widely applied in drug synthesis. The Mannich reaction accounts for a certain proportion of structural modifications of natural products. The introduction of Mannich bases can significantly improve the activity, hydrophilicity, and medicinal properties of compounds; therefore, the Mannich reaction is widely used for the structural modification of natural products. In this paper, the application of the Mannich reaction to the structural modification of natural products is reviewed, providing a method for the structural modification of natural products.
Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Bases de Mannich/químicaRESUMO
Mannich bases consisting of 1,3,4-oxadiazole-2-thione (3 a-3 l) bearing various substituents were synthesized and found potent jack bean urease inhibitors. The prepared compounds showed significantly good inhibitory activities with IC50 values from 9.45±0.05 to 267.42±0.23â µM. The compound 3 k containing 4-chlorophenyl (-R) and 4-hydroxyphenyl (-R') was most active with IC50 9.45±0.05â µM followed by 3 e (IC50 22.52±0.15â µM) in which -R was phenyl and -R' was isopropyl group. However, when both -R and -R' were either 4-chlorophenyl groups (3 l) or only -R' was 4-nitrophenyl (3 i), both compounds were found inactive. The detailed binding affinities of the produced compounds with protein were explored through molecular docking and data-supported in-vitro enzyme inhibition profiles. Drug likeness was confirmed by in silico ADME investigations and molecular orbital analysis (HOMO-LUMO) and electrostatic potential maps were got from DFT calculations. ESP maps exposed that there are two potential binding sites with the most positive and most negative parts.
Assuntos
Inibidores Enzimáticos , Urease , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/química , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , Oxidiazóis/química , Bases de Mannich/farmacologia , Canavalia , Estrutura MolecularRESUMO
QSAR analysis of previously synthesized and nature-inspired virtual isoflavone-cytisine hybrids against the HEp-2 laryngeal carcinoma cell lines was performed using the OCHEM web platform. The validation of the models using an external test set proved that the models can be used to predict the activity of newly designed compounds such as 8-cytisinylmethyl derivatives of 5,7- and 6,7-dihydroxyisoflavones. The synthetic procedure for selective aminomethylation of 5,7-dihydroxyisoflavones with cytisine was developed. In vitro testing identified compound 7 f with cisplatin-level cytotoxicity against HEp-2â cell lines and compound 10 which was twice active than cisplatin after 72â h of incubation.
Assuntos
Alcaloides , Antineoplásicos , Carcinoma , Isoflavonas , Humanos , Cisplatino , Antineoplásicos/farmacologia , Isoflavonas/farmacologia , Bases de Mannich , Relação Estrutura-Atividade , Alcaloides/farmacologia , Linhagem Celular TumoralRESUMO
8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.