Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Can J Microbiol ; 70(1): 1-14, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699258

RESUMO

Salicylic acids have been used in human and veterinary medicine for their anti-pyretic, anti-inflammatory, and analgesic properties for centuries. A key role of salicylic acid-immune modulation in response to microbial infection-was first recognized during studies of their botanical origin. The effects of salicylic acid on bacterial physiology are diverse. In many cases, they impose selective pressures leading to development of cross-resistance to antimicrobial compounds. Initial characterization of these interactions was in Escherichia coli, where salicylic acid activates the multiple antibiotic resistance (mar) operon, resulting in decreased antibiotic susceptibility. Studies suggest that stimulation of the mar phenotype presents similarly in closely related Enterobacteriaceae. Salicylic acids also affect virulence in many opportunistic pathogens by decreasing their ability to form biofilms and increasing persister cell populations. It is imperative to understand the effects of salicylic acid on bacteria of various origins to illuminate potential links between environmental microbes and their clinically relevant antimicrobial-resistant counterparts. This review provides an update on known effects of salicylic acid and key derivatives on a variety of bacterial pathogens, offers insights to possible potentiation of current treatment options, and highlights cellular regulatory networks that have been established during the study of this important class of medicines.


Assuntos
Anti-Infecciosos , Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Bactérias/genética , Escherichia coli , Ácido Salicílico/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
2.
Anaerobe ; 87: 102852, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614291

RESUMO

OBJECTIVE: Treponema denticola has been strongly implicated in the pathogenesis of chronic periodontitis. Previously, we reported that the potential transcriptional regulator TDE_0259 (oxtR1) is upregulated in the bacteriocin ABC transporter gene-deficient mutant. OxtR1 may regulate genes to adapt to environmental conditions during colonization; however, the exact role of the gene in T. denticola has not been reported. Therefore, we investigated its function using an oxtR1-deficient mutant. METHODS: The growth rates of the wild-type and oxtR1 mutant were monitored under anaerobic conditions; their antibacterial agent susceptibility and gene expression were assessed using a liquid dilution assay and DNA microarray, respectively. An electrophoretic mobility shift assay was performed to investigate the binding of OxtR1 to promoter regions. RESULTS: The growth rate of the bacterium was accelerated by the inactivation of oxtR1, and the mutant exhibited an increased minimum inhibitory concentration against ofloxacin. We observed a relative increase in the expression of genes associated with potential ferrodoxin (TDE_0260), flavodoxin, ABC transporters, heat-shock proteins, DNA helicase, iron compounds, and lipoproteins in the mutant. OxtR1 expression increased upon oxygen exposure, and oxtR1 complementation suppressed the expression of potential ferrodoxin. Our findings also suggested that OxtR1 binds to a potential promoter region of the TDE_0259-260 operon. Moreover, the mutant showed a marginal yet significantly faster growth rate than the wild-type strain under H2O2 exposure. CONCLUSION: The oxygen-sensing regulator OxtR1 plays a role in regulating the expression of a potential ferrodoxin, which may contribute to the response of T. denticola to oxygen-induced stress.


Assuntos
Regulação Bacteriana da Expressão Gênica , Treponema denticola , Treponema denticola/genética , Treponema denticola/efeitos dos fármacos , Treponema denticola/crescimento & desenvolvimento , Treponema denticola/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas , Estresse Oxidativo , Anaerobiose , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico
3.
J Bacteriol ; 205(7): e0047822, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37314346

RESUMO

The transcriptional regulator PecS is encoded by select bacterial pathogens. For instance, in the plant pathogen Dickeya dadantii, PecS controls a range of virulence genes, including pectinase genes and the divergently oriented gene pecM, which encodes an efflux pump through which the antioxidant indigoidine is exported. In the plant pathogen Agrobacterium fabrum (formerly named Agrobacterium tumefaciens), the pecS-pecM locus is conserved. Using a strain of A. fabrum in which pecS has been disrupted, we show here that PecS controls a range of phenotypes that are associated with bacterial fitness. PecS represses flagellar motility and chemotaxis, which are processes that are important for A. fabrum to reach plant wound sites. Biofilm formation and microaerobic survival are reduced in the pecS disruption strain, whereas the production of acyl homoserine lactone (AHL) and resistance to reactive oxygen species (ROS) are increased when pecS is disrupted. AHL production and resistance to ROS are expected to be particularly relevant in the host environment. We also show that PecS does not participate in the induction of vir genes. The inducing ligands for PecS, urate, and xanthine, may be found in the rhizosphere, and they accumulate within the plant host upon infection. Therefore, our data suggest that PecS mediates A. fabrum fitness during its transition from the rhizosphere to the host plant. IMPORTANCE PecS is a transcription factor that is conserved in several pathogenic bacteria, where it regulates virulence genes. The plant pathogen Agrobacterium fabrum is important not only for its induction of crown galls in susceptible plants but also for its role as a tool in the genetic manipulation of host plants. We show here that A. fabrum PecS controls a range of phenotypes, which would confer the bacteria an advantage while transitioning from the rhizosphere to the host plant. This includes the production of signaling molecules, which are critical for the propagation of the tumor-inducing plasmid. A more complete understanding of the infection process may inform approaches by which to treat infections as well as to facilitate the transformation of recalcitrant plant species.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio , Agrobacterium/genética , Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/genética
4.
Proc Natl Acad Sci U S A ; 117(45): 28442-28451, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097665

RESUMO

Sounds are processed by the ear and central auditory pathway. These processing steps are biologically complex, and many aspects of the transformation from sound waveforms to cortical response remain unclear. To understand this transformation, we combined models of the auditory periphery with various encoding models to predict auditory cortical responses to natural sounds. The cochlear models ranged from detailed biophysical simulations of the cochlea and auditory nerve to simple spectrogram-like approximations of the information processing in these structures. For three different stimulus sets, we tested the capacity of these models to predict the time course of single-unit neural responses recorded in ferret primary auditory cortex. We found that simple models based on a log-spaced spectrogram with approximately logarithmic compression perform similarly to the best-performing biophysically detailed models of the auditory periphery, and more consistently well over diverse natural and synthetic sounds. Furthermore, we demonstrated that including approximations of the three categories of auditory nerve fiber in these simple models can substantially improve prediction, particularly when combined with a network encoding model. Our findings imply that the properties of the auditory periphery and central pathway may together result in a simpler than expected functional transformation from ear to cortex. Thus, much of the detailed biological complexity seen in the auditory periphery does not appear to be important for understanding the cortical representation of sound.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Som , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Cóclea , Nervo Coclear/fisiologia , Furões , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Fala
5.
J Bacteriol ; 204(1): e0042121, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606373

RESUMO

The paralogues RrpA and RrpB, which are members of the MarR family of DNA binding proteins, are important for the survival of the global bacterial foodborne pathogen Campylobacter jejuni under redox stress. We report that RrpA is a positive regulator of mdaB, encoding a flavin-dependent quinone reductase that contributes to the protection from redox stress mediated by structurally diverse quinones, while RrpB negatively regulates the expression of cj1555c (renamed nfrA for NADPH-flavin reductase A), encoding a flavin reductase. NfrA reduces riboflavin at a greater rate than its derivatives, suggesting that exogenous free flavins are the natural substrate. MdaB and NfrA both prefer NADPH as an electron donor. Cysteine substitution and posttranslational modification analyses indicated that RrpA and RrpB employ a cysteine-based redox switch. Complete genome sequence analyses revealed that mdaB is frequently found in Campylobacter and related Helicobacter spp., while nfrA is predominant in C. jejuni strains. Quinones and flavins are redox cycling agents secreted by a wide range of cell types that can form damaging superoxide by one-electron reactions. We propose a model for stress adaptation where MdaB and NfrA facilitate a two-electron reduction mechanism to the less toxic hydroquinones, thus aiding survival and persistence of this major pathogen. IMPORTANCE Changes in cellular redox potential result in alteration in the oxidation state of intracellular metabolites and enzymes; consequently, cells make adjustments that favor growth and survival. The work we present here answers some of the many questions that have remained elusive over the years of investigation into the enigmatic microaerophile bacterium Campylobacter jejuni. We employed molecular approaches to understand the regulation mechanisms and functional analyses to reveal the roles of two novel quinone and flavin reductases; both serve as major pools of cellular redox-active molecules. This work extends our knowledge on bacterial redox sensing mechanisms and the significance of hemostasis.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Helicobacter pylori/enzimologia , Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Flavinas/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Oxirredutases/genética , Quinonas/metabolismo
6.
J Bacteriol ; 204(11): e0023722, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36286517

RESUMO

Burkholderia thailandensis is a member of the Burkholderia pseudomallei complex. It encodes the transcription factor MftR, which is conserved among the more pathogenic Burkholderia spp. and previously shown to be a global regulator of gene expression. We report here that a B. thailandensis strain in which the mftR gene is disrupted is more virulent in both Caenorhabditis elegans and onion. The ΔmftR strain exhibits a number of phenotypes associated with virulence. It is more proficient at forming biofilm, and the arcDABC gene cluster, which has been linked to anaerobic survival and fitness within a biofilm, is upregulated. Swimming and swarming motility are also elevated in ΔmftR cells. We further show that MftR is one of several transcription factors which control production of the siderophore malleobactin. MftR binds directly to the promoter driving expression of mbaS, which encodes the extracytoplasmic function sigma factor MbaS that is required for malleobactin production. Malleobactin is a primary siderophore in B. thailandensis as evidenced by reduced siderophore production in mbaS::Tc cells, in which mbaS is disrupted. Expression of mbaS is increased ~5-fold in ΔmftR cells, and siderophore production is elevated. Under iron-limiting conditions, mbaS expression is increased ~150-fold in both wild-type and ΔmftR cells, respectively, reflecting regulation by the ferric uptake regulator (Fur). The mbaS expression profiles also point to repression by a separate, ligand-responsive transcription factor, possibly ScmR. Taken together, these data indicate that MftR controls a number of phenotypes, all of which promote bacterial survival in a host environment. IMPORTANCE Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules. Uptake of iron-siderophore complexes averts bacterial iron limitation. In Burkholderia spp., malleobactin or related compounds are the primary siderophores. We show here that genes encoding proteins required for malleobactin production in B. thailandensis are under the direct control of the global transcription factor MftR. Repression of gene expression by MftR is relieved when MftR binds xanthine, a purine metabolite present in host cells. Our work therefore identifies a mechanism by which siderophore production may be optimized in a host environment, thus contributing to bacterial fitness.


Assuntos
Burkholderia , Sideróforos , Sideróforos/metabolismo , Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Ferro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
Biochem Biophys Res Commun ; 607: 146-151, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35367827

RESUMO

Bacillus subtilis is a gram-positive bacterium that has developed to coordinate gene expression and to survive against changes of nutrients and toxic chemicals. Flavonoids are exuded by plant cells and are abundant in the soil. To counteract the antibacterial effects of flavonoids, B. subtilis expresses flavonoid-detoxifying enzymes, and their expression is negatively regulated by transcription factors, including YetL. YetL was shown to control B. subtilis growth through the promoter regions of yetL and yetM genes in response to some flavonoids. Despite the functional significance of the YetL transcription factor in bacterial survival, no structural information is available for YetL. Here, we report the crystal structure of YetL and propose a flavonoid-induced regulatory mechanism. The YetL structure contains the canonical winged helix-turn-helix motif of the MarR superfamily but distinctly presents an additional N-terminal helix. In the dimeric assembly of YetL, the H1 helix intersects the YetL dimer and contributes to extensive intersubunit interactions. As a transcription factor, YetL recognizes a 28-mer operator of double-stranded DNA that contains a palindromic sequence. Moreover, our comparative structural analysis of YetL and other MarR members allows us to propose a flavonoid-induced transcription regulatory mechanism that is used for bacterial adaptation to environmental changes and stresses.


Assuntos
Bacillus subtilis , Fatores de Transcrição , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Flavonoides/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo
8.
Biochem Biophys Res Commun ; 615: 63-69, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35605407

RESUMO

HucR is a MarR family protein of Deinococcus radiodurans, which binds tightly to the intergenic region of HucR and the uricase gene to inhibit their expression. Urate (or uric acid) antagonizes the repressor function of HucR by binding to HucR to impede its association with the cognate DNA. The previously reported crystal structure of HucR was without the bound urate showing significant structural homology to other MarR structures. In this paper, we report the crystal structure of HucR determined with the urate bound. However, despite the fact that the urate is found at a site well-known to harbor ligands in other MarR family proteins, the overall HucR structure indicates that no significant change in structure takes place with the urate bound. Structure analysis further suggests that the urate interaction in HucR is mediated by histidine/glutamate side chains and ordered water molecules stabilized by various residues. Such interaction is quite unique compared to other known structural interactions between urate and its binding proteins. Furthermore, structural comparison of the apo- and the urate bound forms allows us to hypothesize that the Trp20-mediated water network in the apo-form stabilizes the proper HucR fold for cognate DNA binding, and that urate binding, also via Trp20, and the consequent reorganization of water molecules in the binding pocket, likely disrupts the DNA binding configuration to result in the attenuated DNA binding.


Assuntos
Deinococcus , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/química , Deinococcus/química , Ligação Proteica , Ácido Úrico/metabolismo , Água/metabolismo
9.
Appl Environ Microbiol ; 88(11): e0017222, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35604228

RESUMO

Picolinic acid (PA) is a natural toxic pyridine derivative as well as an important intermediate used in the chemical industry. In a previous study, we identified a gene cluster, pic, that responsible for the catabolism of PA in Alcaligenes faecalis JQ135. However, the transcriptional regulation of the pic cluster remains known. This study showed that the entire pic cluster was composed of 17 genes and transcribed as four operons: picR, picCDEF, picB4B3B2B1, and picT1A1A2A3T2T3MN. Deletion of picR, encoding a putative MarR-type regulator, greatly shortened the lag phase of PA degradation. An electrophoretic mobility shift assay and DNase I footprinting showed that PicR has one binding site in the picR-picC intergenic region and two binding sites in the picB-picT1 intergenic region. The DNA sequences of the three binding sites have the palindromic characteristics of TCAG-N4-CTNN: the space consists of four nonspecific bases, and the four palindromic bases on the left and the first two palindromic bases on the right are strictly conserved, while the last two bases on the right vary among the three binding sites. An in vivo ß-galactosidase activity reporter assay indicated that 6-hydroxypicolinic acid but not PA acted as a ligand of PicR, preventing PicR from binding to promoter regions and thus derepressing the transcription of the pic cluster. This study revealed the negative transcriptional regulation mechanism of PA degradation by PicR in A. faecalis JQ135 and provides new insights into the structure and function of the MarR-type regulator. IMPORTANCE The pic gene cluster was found to be responsible for PA degradation and widely distributed in Alpha-, Beta-, and Gammaproteobacteria. Thus, it is very necessary to understand the regulation mechanism of the pic cluster in these strains. This study revealed that PicR binds to three sites of the promoter regions of the pic cluster to multiply regulate the transcription of the pic cluster, which enables A. faecalis JQ135 to efficiently utilize PA. Furthermore, the study also found a unique palindrome sequence for binding of the MarR-type regulator. This study enhanced our understanding of microbial catabolism of environmental toxic pyridine derivatives.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Ácidos Picolínicos , Ligação Proteica , Piridinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cerebellum ; 21(3): 432-439, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34383219

RESUMO

Gerbrandus Jelgersma published extensively on the (pathological) anatomy of the cerebellum between 1886 and 1934. Based on his observations on the double innervation of the Purkinje cells, he formulated a hypothesis on the function of the cerebellum. Both afferent systems of the cerebellum, the mossy fiber-parallel fiber system and the climbing fibers terminate on the Purkinje cell dendrites. According to Jelgersma, the mossy fiber-parallel fiber system is derived from the pontine nuclei and the inferior olive, and would transmit the movement images derived from the cerebral cortex. Spinocerebellar climbing fibers would transmit information about the execution of the movement. When the Purkinje cell compares these inputs and notices a difference between instruction and execution, it sends a correction through the descending limb of the superior cerebellar peduncle to the anterior horn cells. Jelgersma postulates that this cerebro-cerebellar coordination system shares plasticity with other nervous connections because nerve cell dendritic protrusions possess what he called amoeboid mobility: dendritic protrusions can be extended or retracted and are so able to create new connections or to abolish them. Jelgersma's theories are discussed against the background of more recent theories of cerebellar function that, similarly, are based on the double innervation of the Purkinje cells. The amoeboid hypothesis is traced to its roots in the late nineteenth century.


Assuntos
Cerebelo , Células de Purkinje , Córtex Cerebelar/fisiologia , Cerebelo/fisiologia , Neurônios , Núcleo Olivar/fisiologia , Células de Purkinje/fisiologia
11.
Appl Microbiol Biotechnol ; 106(9-10): 3679-3689, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35583698

RESUMO

The MarR family, as multiple antibiotic resistance regulators, is associated with the resistance of organisms to unfavorable conditions. MarR family extracellular polymeric substances (EPS)-associated transcriptional regulator (EpsRAc) was closely associated with copper resistance in Acidithiobacillus caldus (A. caldus). Transcriptional analysis showed high activity of the epsR promoter (PI) in Escherichia coli and differential response to metal ions. The copper content and UV absorption spectrum of the co-purified protein did not increase, but a stoichiometry of 0.667 mol Cu(I) per EpsRAc monomer was observed in vitro in copper titration experiments, suggesting that Cu(II) acts with low affinity in binding to the EpsRAc protein. Electrophoretic mobility shift assays (EMSA) demonstrated that EpsRAc could bind to its own promoter in vitro, and the binding region was the palindrome sequence TGTTCATCGTGTGTGAGCACACA. EpsRAc negatively regulated its own gene expression, whereas Cu(II) mitigates this negative effect. EpsRAc did not bind to other neighboring gene promoters. Finally, we developed a working model to illustrate the regulatory mechanism of A. caldus in response to extreme copper stress. KEY POINTS: • Identification of a MarR family EPS-associated transcriptional regulator, named EpsRAc. • Cu(I) can bind to the EpsRAc protein with low affinity. • EpsRAc negatively regulates the expression of epsR, and Cu(II) can alleviate this negative regulation.


Assuntos
Acidithiobacillus , Proteínas de Escherichia coli , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Cobre/metabolismo , Cobre/farmacologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Can J Microbiol ; 68(3): 157-163, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34982582

RESUMO

The purpose of this study was to explore the function of the MarR family regulator slnO. Additionally, a high-yield strain of salinomycin was constructed using combined regulation strategies. First, the slnO gene overexpression strain (GO) was constructed in Streptomyces albus. Compared to the wild-type (WT) strain, salinomycin production in the GO strain increased by approximately 28%. Electrophoretic mobility gel shift assays (EMSAs) confirmed that the SlnO protein can bind specifically to the intergenic regions of slnN-slnO, slnQ-slnA1, and slnF-slnT. qRT-PCR experiments also showed that slnA1, slnF, and slnT1 were significantly upregulated, whereas the expression level of the slnN gene was downregulated in the GO strain. Second, the slnN gene deletion strain (slnNDM) was used as the starting strain, and the pathway-specific gene slnR in the salinomycin gene cluster was overexpressed in slnNDM. This new strain was named ZJUS01. The yield of salinomycin in the ZJUS01 strain was 25% and 56% higher than those in the slnNDM and WT strains, respectively. The above results indicate that the slnO gene has a positive regulatory effect on the biosynthesis of salinomycin. Meanwhile, the yield of salinomycin can be greatly increased by manipulating multiple transcriptional regulations.


Assuntos
Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Piranos/metabolismo , Streptomyces/genética
13.
Appl Environ Microbiol ; 87(24): e0158821, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613763

RESUMO

In this study, comprehensive analyses were performed to determine the function of an atypical MarR homolog in Achromobacter sp. strain As-55. Genomic analyses of Achromobacter sp. As-55 showed that this marR is located adjacent to an arsV gene. ArsV is a flavin-dependent monooxygenase that confers resistance to the antibiotic methylarsenite [MAs(III)], the organoarsenic compound roxarsone(III) [Rox(III)], and the inorganic antimonite [Sb(III)]. Similar marR genes are widely distributed in arsenic-resistant bacteria. Phylogenetic analyses showed that these MarRs are found in operons predicted to be involved in resistance to inorganic and organic arsenic species, so the subfamily was named MarRars. MarRars orthologs have three conserved cysteine residues, which are Cys36, Cys37, and Cys157 in Achromobacter sp. As-55, mutation of which compromises the response to MAs(III)/Sb(III). GFP-fluorescent biosensor assays show that AdMarRars (MarR protein of Achromobacter deleyi As-55) responds to trivalent As(III) and Sb(III) but not to pentavalent As(V) or Sb(V). The results of RT-qPCR assays show that arsV is expressed constitutively in a marR deletion mutant, indicating that marR represses transcription of arsV. Moreover, electrophoretic mobility shift assays (EMSAs) demonstrate that AdMarRars binds to the promoters of both marR and arsV in the absence of ligands and that DNA binding is relieved upon binding of As(III) and Sb(III). Our results demonstrate that AdMarRars is a novel As(III)/Sb(III)-responsive transcriptional repressor that controls expression of arsV, which confers resistance to MAs(III), Rox(III), and Sb(III). AdMarRars and its orthologs form a subfamily of MarR proteins that regulate genes conferring resistance to arsenic-containing antibiotics. IMPORTANCE In this study, a MarR family member, AdMarRars was shown to regulate the arsV gene, which confers resistance to arsenic-containing antibiotics. It is a founding member of a distinct subfamily that we refer to as MarRars, regulating genes conferring resistance to arsenic and antimony antibiotic compounds. AdMarRars was shown to be a repressor containing conserved cysteine residues that are required to bind As(III) and Sb(III), leading to a conformational change and subsequent derepression. Here we show that members of the MarR family are involved in regulating arsenic-containing compounds.


Assuntos
Achromobacter/genética , Arsênio , Arsenicais , Genes Bacterianos , Achromobacter/efeitos dos fármacos , Antibacterianos , Arsênio/farmacologia , Arsenicais/farmacologia , Cisteína , Farmacorresistência Bacteriana , Família Multigênica , Filogenia , Roxarsona/farmacologia
14.
BMC Microbiol ; 21(1): 304, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736409

RESUMO

BACKGROUND: Chromobacterium violaceum is an environmental opportunistic pathogen that causes rare but deadly infections in humans. The transcriptional regulators that C. violaceum uses to sense and respond to environmental cues remain largely unknown. RESULTS: Here, we described a novel transcriptional regulator in C. violaceum belonging to the MarR family that we named OsbR (oxidative stress response and biofilm formation regulator). Transcriptome profiling by DNA microarray using strains with deletion or overexpression of osbR showed that OsbR exerts a global regulatory role in C. violaceum, regulating genes involved in oxidative stress response, nitrate reduction, biofilm formation, and several metabolic pathways. EMSA assays showed that OsbR binds to the promoter regions of several OsbR-regulated genes, and the in vitro DNA binding activity was inhibited by oxidants. We demonstrated that the overexpression of osbR caused activation of ohrA even in the presence of the repressor OhrR, which resulted in improved growth under organic hydroperoxide treatment, as seem by growth curve assays. We showed that the proper regulation of the nar genes by OsbR ensures optimal growth of C. violaceum under anaerobic conditions by tuning the reduction of nitrate to nitrite. Finally, the osbR overexpressing strain showed a reduction in biofilm formation, and this phenotype correlated with the OsbR-mediated repression of two gene clusters encoding putative adhesins. CONCLUSIONS: Together, our data indicated that OsbR is a MarR-type regulator that controls the expression of a large number of genes in C. violaceum, thereby contributing to oxidative stress defense (ohrA/ohrR), anaerobic respiration (narK1K2 and narGHJI), and biofilm formation (putative RTX adhesins).


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Chromobacterium/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitratos/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Chromobacterium/genética , Chromobacterium/crescimento & desenvolvimento , Nitritos/metabolismo , Fatores de Transcrição/genética
15.
Appl Microbiol Biotechnol ; 105(7): 2911-2924, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33760930

RESUMO

The Lrp and MarR families are two groups of transcriptional regulators widely distributed among prokaryotes. However, the hierarchical-regulatory relationship between the Lrp family and the MarR family remains unknown. Our previous study found that an Lrp (SACE_Lrp) from Saccharopolyspora erythraea indirectly repressed the biosynthesis of erythromycin. In this study, we characterized a novel MarR family protein (SACE_6745) from S. erythraea, which is controlled by SACE_Lrp and plays a direct regulatory role in erythromycin biosynthesis and export. SACE_Lrp directly regulated the expression of marR by specifically binding a precise site OM (5'-CTCCGGGAACCATT-3'). Gene disruption of marR increased the production of erythromycin by 45% in S. erythraea A226. We found that MarR has direct DNA-binding activity for the promoter regions of the erythromycin biosynthetic genes, as well as an ABC exporter SACE_2701-2702 which was genetically proved to be responsible for erythromycin efflux. Disruption of SACE_Lrp in industrial S. erythraea WB was an efficient strategy to enhance erythromycin production. Herein, we jointly engineered SACE_Lrp and its target MarR by deleting marR in WBΔSACE_Lrp, resulting in 20% increase in erythromycin yield in mutant WBΔLrpΔmarR compared to WBΔSACE_Lrp, and 39% to WB. Overall, our findings provide new insights into the hierarchical-regulatory relationship of Lrp and MarR proteins and new avenues for coordinating antibiotic biosynthesis and export by joint engineering regulators in actinomycetes. KEY POINTS: • The hierarchical-regulatory relationship between SACE_Lrp and MarR was identified. • MarR directly controlled the expression of erythromycin biosynthesis and export genes. • Joint engineering of SACE_Lrp-MarR regulatory element enhanced erythromycin production.


Assuntos
Saccharopolyspora , Proteínas de Bactérias/genética , Eritromicina , Humanos , Saccharopolyspora/genética
16.
Biochem J ; 477(19): 3709-3727, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32926092

RESUMO

Corynebacterium glutamicum, an important industrial and model microorganism, inevitably encountered stress environment during fermentative process. Therefore, the ability of C. glutamicum to withstand stress and maintain the cellular redox balance was vital for cell survival and enhancing fermentation efficiency. To robustly survive, C. glutamicum has been equipped with many types of redox sensors. Although cysteine oxidation-based peroxide-sensing regulators have been well described in C. glutamicum, redox sensors involving in multiple environmental stress response remained elusive. Here, we reported an organic peroxide- and antibiotic-sensing MarR (multiple antibiotics resistance regulators)-type regulator, called OasR (organic peroxide- and antibiotic-sensing regulator). The OasR regulator used Cys95 oxidation to sense oxidative stress to form S-mycothiolated monomer or inter-molecular disulfide-containing dimer, resulting in its dissociation from the target DNA promoter. Transcriptomics uncovered the strong up-regulation of many multidrug efflux pump genes and organic peroxide stress-involving genes in oasR mutant, consistent with the phenomenon that oasR mutant showed a reduction in sensitivity to antibiotic and organic peroxide. Importantly, the addition of stress-associated ligands such as cumene hydroperoxide and streptomycin induced oasR and multidrug efflux pump protein NCgl1020 expression in vivo. We speculated that cell resistance to antibiotics and organic peroxide correlated with stress response-induced up-regulation of genes expression. Together, the results revealed that OasR was a key MarR-type redox stress-responsive transcriptional repressor, and sensed oxidative stress generated through hydroxyl radical formation to mediate antibiotic resistance in C. glutamicum.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Farmacorresistência Bacteriana , Peroxidases/biossíntese , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Oxirredução , Estresse Oxidativo , Peroxidases/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética
17.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921535

RESUMO

Pseudomonas aeruginosa is a facultative human pathogen, causing acute and chronic infections that are especially dangerous for immunocompromised patients. The eradication of P. aeruginosa is difficult due to its intrinsic antibiotic resistance mechanisms, high adaptability, and genetic plasticity. The bacterium possesses multilevel regulatory systems engaging a huge repertoire of transcriptional regulators (TRs). Among these, the MarR family encompasses a number of proteins, mainly acting as repressors, which are involved in response to various environmental signals. In this work, we aimed to decipher the role of PA3458, a putative MarR-type TR from P. aeruginosa. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3458 showed changes in the mRNA level of 133 genes; among them, 100 were down-regulated, suggesting the repressor function of PA3458. Concomitantly, ChIP-seq analysis identified more than 300 PA3458 binding sites in P. aeruginosa. The PA3458 regulon encompasses genes involved in stress response, including the PA3459-PA3461 operon, which is divergent to PA3458. This operon encodes an asparagine synthase, a GNAT-family acetyltransferase, and a glutamyl aminopeptidase engaged in the production of N-acetylglutaminylglutamine amide (NAGGN), which is a potent bacterial osmoprotectant. We showed that PA3458-mediated control of PA3459-PA3461 expression is required for the adaptation of P. aeruginosa growth in high osmolarity. Overall, our data indicate that PA3458 plays a role in osmoadaptation control in P. aeruginosa.


Assuntos
Adaptação Fisiológica/genética , Farmacorresistência Bacteriana/genética , Infecções por Pseudomonas/genética , Pseudomonas aeruginosa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Óperon/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação
18.
J Biol Chem ; 294(6): 1891-1903, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30545940

RESUMO

The antibiotic trimethoprim is frequently used to manage Burkholderia infections, and members of the resistance-nodulation-division (RND) family of efflux pumps have been implicated in multidrug resistance of this species complex. We show here that a member of the distinct Escherichia coli multidrug resistance B (EmrB) family is a primary exporter of trimethoprim in Burkholderia thailandensis, as evidenced by increased trimethoprim sensitivity after inactivation of emrB, the gene that encodes EmrB. We also found that the emrB gene is up-regulated following the addition of gentamicin and that this up-regulation is due to repression of the gene encoding OstR, a member of the multiple antibiotic resistance regulator (MarR) family. The addition of the oxidants H2O2 and CuCl2 to B. thailandensis cultures resulted in OstR-dependent differential emrB expression, as determined by qRT-PCR analysis. Specifically, OstR functions as a rheostat that optimizes emrB expression under oxidizing conditions, and it senses oxidants by a unique mechanism involving two vicinal cysteines and one distant cysteine (Cys3, Cys4, and Cys169) per monomer. Paradoxically, emrB inactivation increased resistance of B. thailandensis to tetracycline, a phenomenon that correlated with up-regulation of an RND efflux pump. These observations highlight the intricate mechanisms by which expression of genes that encode efflux pumps is optimized depending on cellular concentrations of antibiotics and oxidants.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Burkholderia/fisiologia , Farmacorresistência Bacteriana/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Cisteína , Escherichia coli/química , Escherichia coli/genética , Oxidantes/metabolismo , Oxidantes/farmacologia , Proteínas Repressoras/genética , Resistência a Trimetoprima
19.
Artigo em Inglês | MEDLINE | ID: mdl-33077659

RESUMO

We previously identified a small-molecule inhibitor of capsule biogenesis (designated DU011) and identified its target as MprA, a MarR family transcriptional repressor of multidrug efflux pumps. Unlike other proposed MprA ligands, such as salicylate and 2,4-dinitrophenol (DNP), DU011 does not alter Escherichia coli antibiotic resistance and has significantly enhanced inhibition of capsule expression. We hypothesized that the potency and the unique action of DU011 are due to novel interactions with the MprA binding pocket and the conformation assumed by MprA upon binding DU011 relative to other ligands. To understand the dynamics of MprA-DU011 interaction, we performed hydrogen-deuterium exchange mass spectrometry (HDX-MS); this suggested that four peptide regions undergo conformational changes upon binding DU011. We conducted isothermal calorimetric titration (ITC) to quantitatively characterize MprA binding to DU011 and canonical ligands and observed a distinct two-site binding isotherm associated with the binding reaction of MprA to DU011; however, salicylate and DNP showed a one-site binding isotherm with lower affinity. To elucidate the binding pocket(s) of MprA, we selected single point mutants of MprA that included mutated residues predicted to be within the putative binding pocket (Q51A, F58A, and E65D) as well as on or near the DNA-binding domain (L81A, S83T, and T86A). Our ITC studies suggest that two of the tested MprA mutants had lower affinity for DU011: Q51A and F58A. In addition to elucidating the MprA binding pocket for DU011, we studied the binding of these mutants to salicylate and DNP to reveal the binding pockets of these canonical ligands.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Sítios de Ligação , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligantes , Polissacarídeos , Ligação Proteica
20.
Microbiology (Reading) ; 166(3): 306-317, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31935187

RESUMO

The MarR-like transcriptional regulator and two ABC transporters encoded by the rcrRPQ operon in the dental caries pathogen Streptococcus mutans have important regulatory roles related to oxidative stress tolerance, genetic competence and (p)ppGpp metabolism. A unique feature of the rcrRPQ operon, when compared to other bacteria, is the presence of two peptides, designated Pep1 and Pep2, encoded in alternative reading frames at the 3' end of rcrQ. Here, we show that the rcrRPQ operon, including Pep1 and 2, is essential for S. mutans to survive and maintain viability at elevated temperatures. No major changes in the levels of the heat shock proteins DnaK or GroEL that could account for the thermosensitivity of rcrRPQ mutants were observed. By introducing a single amino acid substitution into the comX gene that deletes an internally encoded peptide, XrpA, we found that XrpA is a contributing factor to the thermosensitive phenotype of a ΔrcrR strain. Overexpression of XrpA on a plasmid also caused a significant growth defect at 42 °C. Interestingly, loss of the gene for the RelA/SpoT homologue (RSH) enzyme, relA, restored growth of the ΔrcrR strain at 42 °C. During heat stress and when a stringent response was induced, levels of (p)ppGpp were elevated in the ΔrcrR strain. Deletion of relA in the ΔrcrR strain lowered the basal levels of (p)ppGpp to those observed in wild-type S. mutans. Thus, (p)ppGpp pools are dysregulated in ΔrcrR, which likely leads to aberrant control of transcriptional/translational processes and the thermosensitive phenotype. In summary, the genes and peptides encoded in the rcrRPQ operon are critical for thermotolerance, and in some strains these phenotypes are related to altered (p)ppGpp metabolism and increased production of the XrpA peptide.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Streptococcus mutans , Termotolerância/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Óperon/genética , Peptídeos/genética , Peptídeos/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA