Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 133: 374-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24412986

RESUMO

One of the most important factors limiting plant growth is soil pH. The objective of this study is to determine the effectiveness of marble waste applications on neutralization of soil acidity. Marble quarry waste (MQW) and marble cutting waste (MCW) were applied to an acid soil at different rates and their effectiveness on neutralization was evaluated by a laboratory incubation test. The results showed that soil pH increased from 4.71 to 6.36 and 6.84 by applications of MCW and MQW, respectively. It was suggested that MQW and MCW could be used as soil amendments for the neutralization of acid soils and thus the negative impact of marble wastes on the environment could be reduced.


Assuntos
Ácidos/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos , Solo/química
2.
Chemosphere ; 138: 664-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26246275

RESUMO

Soil acidity greatly affects the availability of plant nutrients. The level of soil acidity can be adjusted by treating the soil with certain additives. The objective of this study was to determine the effect of marble quarry waste (MQW) and marble cutting waste (MCW) on the chemical composition and the acidity of a soil. Marble wastes at different rates were applied to an acid soil. Their effectiveness in neutralizing the soil pH was compared with that of agricultural lime. The changes in the chemical composition of the soil were also evaluated with column test at the end of a 75-day incubation period. The results indicated that the MQW and MCW applications significantly increased the soil pH (from 4.71 up to 6.54), the CaCO3 content (from 0.33% up to 0.75%), and the exchangeable Ca (from 14.79 cmol kg(-1) up to 21.18 cmol kg(-1)) and Na (from 0.57 cmol kg(-1) up to 1.07 cmol kg(-1)) contents, but decreased the exchangeable K (from 0.46 cmol kg(-1) down to 0.28 cmol kg(-1)), the plant-available P (from 25.56 mg L(-1) down to 16.62 mg L(-1)), and the extractable Fe (from 259.43 mg L(-1) down to 55.4 mg L(-1)), Cu (from 1.97 mg L(-1) down to 1.42 mg L(-1)), Mn (from 17.89 mg L(-1) down to 4.61 mg L(-1)) and Zn (from 7.88 mg L(-1) down to 1.56 mg L(-1)) contents. In addition, the Cd (from 0.060 mg L(-1) down to 0.046 mg L(-1)), Ni (from 0.337 mg L(-1) down to 0.092 mg L(-1)) and Pb (from 28.00 mg L(-1) down to 20.08 mg L(-1)) concentrations decreased upon the treatment of the soil with marble wastes.


Assuntos
Carbonato de Cálcio/química , Resíduos Industriais , Solo/química , Agricultura , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA