Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Semin Cell Dev Biol ; 123: 22-35, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34489173

RESUMO

Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.


Assuntos
Osteoartrite , Osteoporose , Adipócitos , Idoso , Envelhecimento , Exercício Físico , Humanos , Osteoartrite/terapia , Osteoblastos , Estudos Prospectivos
2.
J Magn Reson Imaging ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556790

RESUMO

BACKGROUND: Growing evidence suggests that marrow adipocytes play an active role in the regulation of bone metabolism and hematopoiesis. However, research on the relationship between bone and fat in the context of hematological diseases, particularly ß-thalassemia, remains limited. PURPOSE: To investigate the relationship between marrow fat and cortical bone thickness in ß-thalassemia and to identify key determinants influencing these variables. STUDY TYPE: Prospective. SUBJECTS: Thirty-five subjects in four subject groups of increasing disease severity: 6 healthy control (25.0 ± 5.3 years, 2 male), 4 ß-thalassemia minor, 13 intermedia, and 12 major (29.1 ± 6.4 years, 15 male). FIELD STRENGTH/SEQUENCE: 3.0 T, 3D fast low angle shot sequence and T1-weighted turbo spin echo. ASSESSMENT: Analyses on proton density fat fraction (PDFF) and R2* values in femur subregions (femoral head, greater trochanter, intertrochanteric, diaphysis, distal) and cortical thickness (CBI) of the subjects' left femur. Clinical data such as age, sex, body mass index (BMI), and disease severity were also included. STATISTICAL TESTS: One-way analysis of variance (ANOVA), mixed ANOVA, Pearson correlation and multiple regression. P-values <0.05 were considered significant. RESULTS: Bone marrow PDFF significantly varied between the femur subregions, F(2.89,89.63) = 44.185 and disease severity, F(1,3) = 12.357. A significant interaction between subject groups and femur subregions on bone marrow PDFF was observed, F(8.67,89.63) = 3.723. Notably, a moderate positive correlation was observed between PDFF and CBI (r = 0.33-0.45). Multiple regression models for both PDFF (R2 = 0.476, F(13,151) = 10.547) and CBI (R2 = 0.477, F(13,151) = 10.580) were significant. Significant predictors for PDFF were disease severity (ßTMi = 0.36, ßTMa = 0.17), CBI (ß = 0.24), R2* (ß = -0.32), and height (ß = -0.29) while for CBI, the significant determinants were sex (ß = -0.27), BMI (ß = 0.55), disease severity (ßTMi = 2.15), and PDFF (ß = 0.25). DATA CONCLUSION: This study revealed a positive correlation between bone marrow fat fraction and cortical bone thickness in ß-thalassemia with varying disease severity, potentially indicating a complex interplay between bone health and marrow composition. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

3.
Curr Osteoporos Rep ; 22(4): 367-377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922359

RESUMO

PURPOSE OF REVIEW: Along with a strong impact on skeletal integrity, bone marrow adipose tissue (BMAT) is an important modulator of the adult hematopoietic system. This review will summarize the current knowledge on the causal relationship between bone marrow (BM) adipogenesis and the development and progression of hematologic malignancies. RECENT FINDINGS: BM adipocytes (BMAds) support a number of processes promoting oncogenesis, including the evolution of clonal hematopoiesis, malignant cell survival, proliferation, angiogenesis, and chemoresistance. In addition, leukemic cells manipulate surrounding BMAds by promoting lipolysis and release of free fatty acids, which are then utilized by leukemic cells via ß-oxidation. Therefore, limiting BM adipogenesis, blocking BMAd-derived adipokines, or lipid metabolism obstruction have been considered as potential treatment options for hematological malignancies. Leukemic stem cells rely heavily on BMAds within the structural BM microenvironment for necessary signals which foster disease progression. Further development of 3D constructs resembling BMAT at different skeletal regions are critical to better understand these relationships in geometric space and may provide essential insight into the development of hematologic malignancies within the BM niche. In turn, these mechanisms provide promising potential as novel approaches to targeting the microenvironment with new therapeutic strategies.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo , Medula Óssea , Neoplasias Hematológicas , Humanos , Adipócitos/metabolismo , Microambiente Tumoral , Hematopoese
4.
Curr Osteoporos Rep ; 22(6): 561-575, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39394545

RESUMO

PURPOSE OF REVIEW: Bone homeostasis is balanced between formation and resorption activities and remain in relative equilibrium. Under disease states this process is disrupted, favoring more resorption over formation, leading to significant bone loss and fracture incidence. This aspect is a hallmark for patients with chronic kidney disease mineral and bone disorder (CKD-MBD) affecting a significant portion of the population, both in the United States and worldwide. Further study into the underlying effects of the uremic microenvironment within bone during CKD-MBD are critical as fracture incidence in this patient population not only leads to increased morbidity, but also increased mortality. Lack of bone homeostasis also leads to mineral imbalance contributing to cardiovascular calcifications. One area understudied is the possible involvement of bone marrow adipose tissue (BMAT) during the progression of CKD-MBD. RECENT FINDINGS: BMAT accumulation is found during aging and in several disease states, some of which overlap as CKD etiologies. Importantly, research has found presence of BMAT inversely correlates with bone density and volume. Understanding the underlying molecular mechanisms for BMAT formation and accumulation during CKD-MBD may offer a potential therapeutic avenue to improve bone homeostasis and ultimately mineral metabolism.


Assuntos
Adiposidade , Densidade Óssea , Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Distúrbio Mineral e Ósseo na Doença Renal Crônica/fisiopatologia , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Homeostase/fisiologia
5.
Annu Rev Physiol ; 82: 461-484, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31702948

RESUMO

The skeleton harbors an array of lineage cells that have an essential role in whole body homeostasis. Adipocytes start the colonization of marrow space early in postnatal life, expanding progressively and influencing other components of the bone marrow through paracrine signaling. In this unique, closed, and hypoxic environment close to the endosteal surface and adjacent to the microvascular space the marrow adipocyte can store or provide energy, secrete adipokines, and target neighboring bone cells. Adipocyte progenitors can also migrate from the bone marrow to populate white adipose tissue, a process that accelerates during weight gain. The marrow adipocyte also has an endocrine role in whole body homeostasis through its varied secretome that targets distant adipose depots, skeletal muscle, and the nervous system. Further insights into the biology of this unique and versatile cell will undoubtedly lead to novel therapeutic approaches to metabolic and age-related disorders such as osteoporosis and diabetes mellitus.


Assuntos
Adipócitos/fisiologia , Células da Medula Óssea/fisiologia , Adipocinas/fisiologia , Animais , Metabolismo Energético/fisiologia , Humanos , Osteoblastos/fisiologia
6.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396660

RESUMO

Bone marrow adipose tissue (BMAT) is hypothesized to serve as an expandable/contractible fat depot which functions, in part, to minimize energy requirements for sustaining optimal hematopoiesis. We investigated whether BMAT is required for immune reconstitution following injury. Male wild type (WBB6F1, WT) and BMAT-deficient WBB6F1/J-KitW/KitW-v/J (KitW/W-v) mice were lethally irradiated. Irradiation was followed by adoptive transfer of 1000 purified WT hematopoietic stem cells (HSCs). The extent of immune reconstitution in blood, bone marrow, and lymph nodes in the irradiated mice was determined using HSCs from green fluorescent protein (GFP)-expressing mice. We also evaluated skeletal response to treatment. Detection of GFP-positive B and T cells in peripheral blood at 4 and 9 weeks following adoptive transfer and in bone marrow and lymph nodes following necropsy revealed excellent immune reconstitution in both WT and BMAT-deficient mice. Adipocytes were numerous in the distal femur of WT mice but absent or rare in KitW/W-v mice. Bone parameters, including length, mass, density, bone volume, microarchitecture, and turnover balance, exhibited few differences between WT and BMAT-deficient mice. The minimal differences suggest that BMAT is not required for reconstitution of the immune system following lethal radiation and is not a major contributor to the skeletal phenotypes of kit signaling-deficient mice.


Assuntos
Tecido Adiposo , Medula Óssea , Masculino , Animais , Camundongos , Medula Óssea/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Células-Tronco Hematopoéticas , Osso e Ossos
7.
Magn Reson Med ; 90(1): 240-249, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119515

RESUMO

PURPOSE: To demonstrate the feasibility and accuracy of chemical shift-encoded imaging of the fatty acid composition (FAC) of human bone marrow adipose tissue at 7 T, and to determine suitable image-acquisition parameters using simulations. METHODS: The noise performance of FAC estimation was investigated using simulations with a range of inter-echo time, and accuracy was assessed using a phantom experiment. Furthermore, one knee of 8 knee-healthy subjects (ages 35-54 years) was imaged, and the fractions of saturated fatty acids (SFA) and polyunsaturated fatty acids (PUFA) were mapped. Values were compared between reconstruction methods, and between anatomical regions. RESULTS: Based on simulations, ΔTE = 0.6 ms was chosen. The phantom experiment demonstrated high accuracy of especially SFA using a constrained reconstruction model (slope = 1.1, average bias = -0.2%). The lowest accuracy was seen for PUFA using a free model (slope = 2.0, average bias = 9.0%). For in vivo images, the constrained model resulted in lower intersubject variation compared with the free model (e.g., in the femoral shaft, the SFA percent-point range was within 1.0% [vs. 3.0%]). Furthermore, significant regional FAC differences were detected. For example, using the constrained approach, the femoral SFA in the medial condyle was lower compared with the shaft (median [range]: 27.9% [27.1%, 28.4%] vs. 32.5% [31.8%, 32.8%]). CONCLUSION: Bone marrow adipose tissue FAC quantification using chemical-shift encoding is feasible at 7 T. Both the noise performance and accuracy of the technique are superior using a constrained signal model.


Assuntos
Ácidos Graxos , Imageamento por Ressonância Magnética , Humanos , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Ácidos Graxos/química , Medula Óssea/diagnóstico por imagem , Estudos de Viabilidade , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/química
8.
Curr Osteoporos Rep ; 21(1): 45-55, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534306

RESUMO

PURPOSE OF REVIEW: This review focuses on the recent findings regarding bone marrow adipose tissue (BMAT) concerning bone health. We summarize the variations in BMAT in relation to age, sex, and skeletal sites, and provide an update on noninvasive imaging techniques to quantify human BMAT. Next, we discuss the role of BMAT in patients with osteoporosis and interventions that affect BMAT. RECENT FINDINGS: There are wide individual variations with region-specific fluctuation and age- and gender-specific differences in BMAT content and composition. The Bone Marrow Adiposity Society (BMAS) recommendations aim to standardize imaging protocols to increase comparability across studies and sites. Water-fat imaging (WFI) seems an accurate and efficient alternative for spectroscopy (1H-MRS). Most studies indicate that greater BMAT is associated with lower bone mineral density (BMD) and a higher prevalence of vertebral fractures. The proton density fat fraction (PDFF) and changes in lipid composition have been associated with an increased risk of fractures independently of BMD. Therefore, PDFF and lipid composition could potentially be future imaging biomarkers for assessing fracture risk. Evidence of the inhibitory effect of osteoporosis treatments on BMAT is still limited to a few randomized controlled trials. Moreover, results from the FRAME biopsy sub-study highlight contradictory findings on the effect of the sclerostin antibody romosozumab on BMAT. Further understanding of the role(s) of BMAT will provide insight into the pathogenesis of osteoporosis and may lead to targeted preventive and therapeutic strategies.


Assuntos
Medula Óssea , Osteoporose , Humanos , Medula Óssea/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Osteoporose/diagnóstico por imagem , Osteoporose/patologia , Densidade Óssea , Lipídeos
9.
J Anat ; 240(6): 1162-1173, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34978341

RESUMO

Previous studies suggested that osteocyte lacunar network disruption could play a role in the complex pathophysiology of bone changes in aging and disease. Considering that particular research interest is lacking, we aimed to assess alcoholic liver cirrhosis (ALC)-induced changes in osteocyte lacunar network and bone marrow adiposity. Immunohistochemistry was conducted to assess changes in the micro-morphology of osteocyte lacunar network and bone marrow adiposity, and expression of connexin 43 and sclerostin in vertebral and femoral samples collected from 40 cadaveric men (age range between 44 and 70 years) divided into ALC group (n = 20) and control group (n = 20). Furthermore, the assessment of the potential association between bone changes and the severity of the hepatic disorder (given by Knodell's pathohistologic scoring) was conducted. Our data revealed fewer connexin 43-positive osteocytes per vertebral and femoral bone area (p < 0.01), suggesting defective signal transduction among osteocytes in ALC individuals. Moreover, we found an ALC-induced increase in the number of adipocytes in the vertebral bone marrow (p = 0.038). Considering significant associations between the severity of liver tissue disturbances and impaired functionality of osteocyte lacunar network (Pearson's correlation analyses, p < 0.05), we may assume that timely treatment of the liver disease may delay bone impairment. ALC induced an increase in osteocytic sclerostin expression (p < 0.001), suggesting its role in mediating low bone formation among ALC individuals. Hence, medicaments targeting low bone formation may be beneficial to attenuate the bone changes among ALC patients. However, future clinical studies are required to verify the therapeutic utility of these findings.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Conexina 43 , Cirrose Hepática Alcoólica , Osteócitos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Cadáver , Conexina 43/metabolismo , Humanos , Cirrose Hepática Alcoólica/metabolismo , Cirrose Hepática Alcoólica/patologia , Masculino , Pessoa de Meia-Idade
10.
NMR Biomed ; 35(2): e4633, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34658086

RESUMO

BACKGROUND: Nowadays, the drive towards high-field MRI is fueled by the pursuit of higher signal-to-noise ratio, spatial resolution, and imaging speed. However, high field strength is associated with field inhomogeneity, acceleration of T2 * decay, and increased chemical shift, which may pose challenges to conventional MRI for fat quantification in complex tissues such as bone marrow. With proton MRI spectroscopy (1 H-MRS), on the other hand, it is difficult to produce high resolution. As a novel alternative fat quantification method, high-resolution Z-spectral MRI (ZS-MRI) can achieve fat quantification by acquiring direct saturated images of both fat and water under the same TE , which may be less affected by T2 * decay and field inhomogeneity. PURPOSE: To demonstrate ZS-MRI for marrow adipose tissue (MAT) quantification in rat's lumbar spine and the early detection of MAT changes with age. METHODS: The accuracy of ZS-MRI for fat quantification at ultra-high-field MRI (7 T) was verified with MRS and conventional Dixon MRI in water-oil mixed phantoms with varying fat fraction (FF). Dixon MRI data were processed with iterative decomposition of water and fat with echo asymmetry and least-squares estimation. ZS-MRI was then used to longitudinally monitor the adiposity in the lumbar spine of young healthy rats at 13, 17, and 21 weeks to detect the early changes of FF with age in MAT. Hematoxylin-eosin staining of lumbar spines from separated rat groups was performed for verification. RESULTS: In ex vivo phantom experiments, both Dixon MRI and ZS-MRI were well correlated with 1 H-MRS for the quantification of FF at 7 T (R > 0.99). Compared with Dixon MRI, ZS-MRI showed reduced image artifacts due to field inhomogeneity and presented better agreement with 1 H-MRS for the early detection of increased MAT due to age at 7 T (ZS-MRI R = 0.78 versus Dixon MRI R = 0.34). The increased MAT FF due to age was confirmed by histology. CONCLUSION: ZS-MRI proves itself as an alternative fat quantification method for bone marrow in rats at 7 T.


Assuntos
Adiposidade , Medula Óssea/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Espectroscopia de Ressonância Magnética , Ratos , Ratos Sprague-Dawley
11.
Osteoporos Int ; 33(12): 2619-2627, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35999286

RESUMO

Although bone mineral density (BMD) is decreased and fracture risk increased in anorexia nervosa, BMD does not predict fracture history in this disorder. We assessed BMD, bone microarchitecture, and bone marrow adipose tissue (BMAT) in women with anorexia nervosa and found that only BMAT was associated with fracture history. INTRODUCTION: Anorexia nervosa (AN) is a psychiatric disorder characterized by low body weight, low BMD, and increased risk of fracture. Although BMD is reduced and fracture risk elevated, BMD as assessed by DXA does not distinguish between individuals with versus those without prior history of fracture in AN. Despite having decreased peripheral adipose tissue stores, individuals with AN have enhanced bone marrow adipose tissue (BMAT), which is inversely associated with BMD. Whether increased BMAT is associated with fracture in AN is not known. METHODS: We conducted a cross-sectional study in 62 premenopausal women, including 34 with AN and 28 normal-weight women of similar age. Fracture history was collected during patient interviews and BMD measured by DXA, BMAT by 1H-MRS, and parameters of bone microarchitecture by HR-pQCT. RESULTS: Sixteen women (47.1%) with AN reported prior history of fracture compared to 11 normal-weight women (39.3%, p = 0.54). In the entire group and also the subset of women with AN, there were no significant differences in BMD or parameters of bone microarchitecture in women with prior fracture versus those without. In contrast, women with AN with prior fracture had greater BMAT at the spine and femur compared to those without (p = 0.01 for both). CONCLUSION: In contrast to BMD and parameters of bone microarchitecture, BMAT is able to distinguish between women with AN with prior fracture compared to those without. Prospective studies will be necessary to understand BMAT's potential pathophysiologic role in the increased fracture risk in AN.


Assuntos
Anorexia Nervosa , Fraturas Ósseas , Feminino , Humanos , Medula Óssea , Absorciometria de Fóton , Anorexia Nervosa/complicações , Estudos Transversais , Estudos Prospectivos , Densidade Óssea/fisiologia , Tecido Adiposo/diagnóstico por imagem
12.
Osteoporos Int ; 33(7): 1545-1556, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35113175

RESUMO

Bone marrow adipose tissue (BMAT) has been implicated in a number of conditions associated with bone deterioration and osteoporosis. Several studies have found an inverse relationship between BMAT and bone mineral density (BMD), and higher levels of BMAT in those with prevalent fracture. Magnetic resonance imaging (MRI) is the gold standard for measuring BMAT, but its use is limited by high costs and low availability. We hypothesized that BMAT could also be accurately quantified using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS: In the present study, a novel method to quantify the tibia bone marrow fat fraction, defined by MRI, using HR-pQCT was developed. In total, 38 postmenopausal women (mean [standard deviation] age 75.9 [3.1] years) were included and measured at the same site at the distal (n = 38) and ultradistal (n = 18) tibia using both MRI and HR-pQCT. To adjust for partial volume effects, the HR-pQCT images underwent 0 to 10 layers of voxel peeling to remove voxels adjacent to the bone. Linear regression equations were then tested for different degrees of voxel peeling, using the MRI-derived fat fractions as the dependent variable and the HR-pQCT-derived radiodensity as the independent variables. RESULTS: The most optimal HR-pQCT derived model, which applied a minimum of 4 layers of peeled voxel and with more than 1% remaining marrow volume, was able to explain 76% of the variation in the ultradistal tibia bone marrow fat fraction, measured with MRI (p < 0.001). CONCLUSION: The novel HR-pQCT method, developed to estimate BMAT, was able to explain a substantial part of the variation in the bone marrow fat fraction and can be used in future studies investigating the role of BMAT in osteoporosis and fracture prediction.


Assuntos
Fraturas Ósseas , Osteoporose , Tecido Adiposo/diagnóstico por imagem , Idoso , Densidade Óssea , Medula Óssea/diagnóstico por imagem , Feminino , Humanos , Osteoporose/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
13.
Calcif Tissue Int ; 110(3): 294-302, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34518923

RESUMO

Accurate quantification of bone, muscle, and their components is still an unmet need in the musculoskeletal field. Current methods to quantify tissue volumes in 3D images are expensive, labor-intensive, and time-consuming; thus, a reliable, valid, and quick application is highly needed. Tissue Compass is a standalone software for semiautomatic segmentation and automatic quantification of musculoskeletal organs. To validate the software, cross-sectional micro-CT scans images of rat femur (n = 19), and CT images of hip and abdomen (n = 100) from the Osteoporotic Fractures in Men (MrOS) Study were used to quantify bone, hematopoietic marrow (HBM), and marrow adipose tissue (MAT) using commercial manual software as a comparator. Also, abdominal CT scans (n = 100) were used to quantify psoas muscle volumes and intermuscular adipose tissue (IMAT) using the same software. We calculated Pearson's correlation coefficients, individual intra-class correlation coefficients (ICC), and Bland-Altman limits of agreement together with Bland-Altman plots to show the inter- and intra-observer agreement between Tissue Compass and commercially available software. In the animal study, the agreement between Tissue Compass and commercial software was r > 0.93 and ICC > 0.93 for rat femur measurements. Bland-Altman limits of agreement was - 720.89 (- 1.5e+04, 13,074.00) for MAT, 4421.11 (- 1.8e+04, 27,149.73) for HBM and - 6073.32 (- 2.9e+04, 16,388.37) for bone. The inter-observer agreement for QCT human study between two observers was r > 0.99 and ICC > 0.99. Bland-Altman limits of agreement was 0.01 (- 0.07, 0.10) for MAT in hip, 0.02 (- 0.08, 0.12) for HBM in hip, 0.05 (- 0.15, 0.25) for bone in hip, 0.02 (- 0.18, 0.22) for MAT in L1, 0.00 (- 0.16, 0.16) for HBM in L1, and 0.02 (- 0.23, 0.27) for bone in L1. The intra-observer agreement for QCT human study between the two applications was r > 0.997 and ICC > 0.99. Bland-Altman limits of agreement was 0.03 (- 0.13, 0.20) for MAT in hip, 0.05 (- 0.08, 0.18) for HBM in hip, 0.05 (- 0.24, 0.34) for bone in hip, - 0.02 (- 0.34, 0.31) for MAT in L1, - 0.14 (- 0.44, 0.17) for HBM in L1, - 0.29 (- 0.62, 0.05) for bone in L1, 0.03 (- 0.08, 0.15) for IMAT in psoas, and 0.02 (- 0.35, 0.38) for muscle in psoas. Compared to a conventional application, Tissue Compass demonstrated high accuracy and non-inferiority while also facilitating easier analyses. Tissue Compass could become the tool of choice to diagnose tissue loss/gain syndromes in the future by requiring a small number of CT sections to detect tissue volumes and fat infiltration.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Animais , Estudos Transversais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Microtomografia por Raio-X
14.
J Clin Densitom ; 25(4): 485-489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36064698

RESUMO

Pubertal suppression with gonadotropin-releasing hormone (GnRH) agonists in transgender and gender non-conforming (TGNC) youth may affect acquisition of peak bone mass. Bone marrow adipose tissue (BMAT) has an inverse relationship with bone mineral density (BMD). To evaluate the effect of pubertal suppression on BMAT, in this pilot study we prospectively studied TGNC youth undergoing pubertal suppression and cisgender control participants with similar pubertal status over a 12-month period. BMD was measured by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Magnetic Resonance T1 relaxometry (T1-R) and spectroscopy (MRS) were performed to quantify BMAT at the distal femur. We compared the change in BMD, T1-R values, and MRS lipid indices between the two groups. Six TGNC (two assigned female and four assigned male at birth) and three female control participants (mean age 10.9 and 11.7 years, respectively) were enrolled. The mean lumbar spine BMD Z-score declined by 0.29 in the TGNC group, but increased by 0.48 in controls (between-group difference 0.77, 95% CI: 0.05, 1.45). Similar findings were observed with the change in trabecular volumetric BMD at the 3% tibia site (-4.1% in TGNC, +3.2% in controls, between-group difference 7.3%, 95% CI: 0.5%-14%). Distal femur T1 values declined (indicative of increased BMAT) by 7.9% in the TGNC group, but increased by 2.1% in controls (between-group difference 10%, 95% CI: -12.7%, 32.6%). Marrow lipid fraction by MRS increased by 8.4% in the TGNC group, but declined by 0.1% in controls (between-group difference 8.5%, 95% CI: -50.2%, 33.0%). In conclusion, we observed lower bone mass acquisition and greater increases in BMAT indices by MRI and MRS in TGNC youth after 12 months of GnRH agonists compared with control participants. Early changes in BMAT may underlie an alteration in bone mass acquisition with pubertal suppression, including alterations in mesenchymal stem cells within marrow.


Assuntos
Medula Óssea , Pessoas Transgênero , Recém-Nascido , Adolescente , Masculino , Humanos , Feminino , Criança , Medula Óssea/diagnóstico por imagem , Projetos Piloto , Absorciometria de Fóton , Tecido Adiposo/diagnóstico por imagem , Densidade Óssea , Lipídeos , Hormônio Liberador de Gonadotropina
15.
J Magn Reson Imaging ; 53(1): 190-198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237616

RESUMO

BACKGROUND: ß-thalassemia is a genetic disease that causes abnormal production of red blood cells (ineffective erythropoiesis, IE). IE is a condition known to change bone marrow composition. PURPOSE: To evaluate the effect of IE on the marrow fat content and fat unsaturation levels in the proximal femur using 1 H-MRS. STUDY TYPE: Prospective. SUBJECTS: Twenty-three subjects were included in this study, seven control and 16 ß-thalassemia subjects. FIELD STRENGTH/SEQUENCE: 3.0T; stimulated echo acquisition Mode (STEAM); magnetic resonance spectroscopy (MRS) sequence. ASSESSMENT: Multiecho MRS scans were performed in four regions of the proximal left femur of each subject, that is, diaphysis, femoral neck, femoral head, and greater trochanter. The examined regions were grouped into red (diaphysis and femoral neck) and yellow marrow regions (femoral head and greater trochanter). STATISTICAL TESTS: The Jonckheere-Terpstra test was used to evaluate the impact of increasing disease severity on bone marrow fat fraction (BMFF), marrow conversion index, and fat unsaturation index (UI). Pairwise comparison analysis was performed when a significant trend (P < 0.05) was found. K-means clustering analysis was used to examine the clusters observed when BMFF in the red and yellow regions were studied (diaphysis against greater trochanter). RESULTS: BMFF showed a significant decreasing trend with increasing disease severity in both red (TJT = 109.00, z = -4.414, P < 0.05) and yellow marrow regions (TJT = 108.00, z = -4.438, P < 0.05). The opposite trend was observed in UI in both bone marrow regions (red marrow: TJT = 180.5, z = 3.515, P < 0.05; yellow marrow: TJT = 155.0, z = 2.282, P = 0.05). Three distinct forms of marrow adipogenesis were found when plotting BMFF diaphysis against BMFF greater trochanter: 1) normal (centroid: 80.4%, 66.6%), 2) partial disruption (centroid: 51.1%, 16.6%), and 3) total disruption (centroid: 2.6%, 1.6%). DATA CONCLUSION: ß-thalassemia is associated with decreased marrow fat, and increased marrow fat unsaturation level. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Medula Óssea , Talassemia beta , Tecido Adiposo/diagnóstico por imagem , Medula Óssea/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Estudos Prospectivos , Talassemia beta/diagnóstico por imagem
16.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202651

RESUMO

Dieting is a common but often ineffective long-term strategy for preventing weight gain. Similar to humans, adult rats exhibit progressive weight gain. The adipokine leptin regulates appetite and energy expenditure but hyperleptinemia is associated with leptin resistance. Here, we compared the effects of increasing leptin levels in the hypothalamus using gene therapy with conventional caloric restriction on weight gain, food consumption, serum leptin and adiponectin levels, white adipose tissue, marrow adipose tissue, and bone in nine-month-old female Sprague-Dawley rats. Rats (n = 16) were implanted with a cannula in the 3rd ventricle of the hypothalamus and injected with a recombinant adeno-associated virus, encoding the rat gene for leptin (rAAV-Lep), and maintained on standard rat chow for 18 weeks. A second group (n = 15) was calorically-restricted to match the weight of the rAAV-Lep group. Both approaches prevented weight gain, and no differences in bone were detected. However, calorically-restricted rats consumed 15% less food and had lower brown adipose tissue Ucp-1 mRNA expression than rAAV-Lep rats. Additionally, calorically-restricted rats had higher abdominal white adipose tissue mass, higher serum leptin and adiponectin levels, and higher marrow adiposity. Caloric restriction and hypothalamic leptin gene therapy, while equally effective in preventing weight gain, differ in their effects on energy intake, energy expenditure, adipokine levels, and body composition.


Assuntos
Restrição Calórica , Metabolismo Energético , Terapia Genética , Hipotálamo/metabolismo , Leptina/genética , Adipocinas/sangue , Adipocinas/genética , Adipocinas/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Animais , Biomarcadores , Peso Corporal , Medula Óssea/metabolismo , Dependovirus/genética , Ingestão de Energia , Metabolismo Energético/genética , Feminino , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Leptina/metabolismo , Ratos , Transgenes
17.
Biochem Biophys Res Commun ; 529(2): 133-139, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703401

RESUMO

The unique metabolic characteristics and diverse functions of marrow adipose tissue (MAT) have drawn more attention recently. Previously, we have reported that CBFA2T2 is required for BMP2-induced osteogenic differentiation of mesenchymal stem/stromal cells (MSCs). In the present study, we further investigated the role of CBFA2T2 in regulation of adipogenic differentiation in mouse bone marrow-derived MSCs (mBMSCs) and human dental pulp stem cells (hDPSCs). We found CBFA2T2 expression was dramatically upregulated during adipogenesis of mBMSCs and hDPSCs. More importantly, knockdown of CBFA2T2 in mBMSCs and hDPSCs significantly inhibited the process of adipogenic differentiation, as revealed by the expression of adipogenic markers and Oil Red O staining. Mechanistically, we found knockdown of CBFA2T2 led to an increase in H3K9me2 and H3K9me3 levels at promoter of CEBPA, an essential transcription factor of adipogenesis. Taken together, these findings suggest CBFA2T2 is key regulator of adipogenic differentiation of MSCs, and it may represent a therapeutic target for conditions with excessive MAT.


Assuntos
Adipogenia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Proteínas Repressoras/metabolismo , Adulto , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Células Cultivadas , Polpa Dentária/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Repressoras/genética , Adulto Jovem
18.
Osteoporos Int ; 31(6): 1125-1133, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32108240

RESUMO

The present study suggests that insulin resistance has no association with bone quantity, but quality. INTRODUCTION: The literature has contradictory results concerning the influence of insulin resistance on bone. The present study sought to evaluate the association of insulin resistance and adipose tissue with either bone mineral density or the trabecular bone score. METHODS: The study included 56 individuals (36 women and 20 men): age = 46.6 ± 14.2 years, weight = 67.8 ± 10.9 kg, height = 1.65 ± 0.10 m and BMI = 24.8 ± 3.9 kg/m2. The investigational protocol included biochemical determinations and bone assessment by dual X-ray absorptiometry for evaluation of bone mineral density and trabecular bone score. Magnetic resonance was employed to estimate visceral, subcutaneous and bone marrow adipose tissues, as well as intrahepatic lipids. RESULTS: The bone mineral density of the lumbar spine, femoral neck and total hip were not associated with insulin resistance-related parameters [visceral adipose tissue, intrahepatic lipids and homeostatic model assessment of insulin resistance (HOMA-IR)]. In contrast, there was a negative relationship between the trabecular bone score and all these components. The association between the trabecular bone score and HOMA-IR was reinforced after adjustment for age and BMI. Marrow adipose tissue was negatively associated with both bone mineral density and trabecular bone score. CONCLUSIONS: The present study shows that the trabecular bone score is negatively associated with marrow adipose tissue, insulin resistance, visceral adipose tissue and intrahepatic lipid measurements. Additionally, there was a negative relationship between saturated lipids in marrow adipose tissue and the trabecular bone score. These results encourage further studies to investigate the role of the trabecular bone score exam in the clinical evaluation of osteoporosis in conditions of insulin resistance.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Resistência à Insulina , Absorciometria de Fóton , Adulto , Medula Óssea , Feminino , Humanos , Gordura Intra-Abdominal , Lipídeos/análise , Fígado/química , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
19.
Calcif Tissue Int ; 107(2): 126-134, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32356017

RESUMO

The increasing levels of bone marrow fat evident in aging and osteoporosis are associated with low bone mass and attributed to reduced osteoblastogenesis. Local lipotoxicity has been proposed as the primary mechanism driving this reduction in bone formation. However, no studies have examined the correlation between high levels of marrow fat volumes and changes in local cellularity. In this study, we hypothesize that areas of bone marrow with high fat volumes are associated with significant changes in cell number within a similar region of interest (ROI). Inbred albino Louvain (LOU) rats, originating from the Wistar strain, have been described as a model of healthy aging with the absence of obesity but expressing the typical features of age-related bone loss. We compared local changes in distal femur cellularity and structure in specific ROI of undecalcified bone sections from 4- and 20-month-old male and female LOU rats and Wistar controls. Our results confirmed that older LOU rats exhibited significantly higher fat volumes than Wistar rats (p < 0.001). These higher fat volume/total volume were associated with lower trabecular number (p < 0.05) and thickness (p < 0.05) and higher trabecular separation (p < 0.05). In addition, osteoblast and osteocyte numbers were reduced in the similar ROI containing high levels of adiposity, while osteoclast number was higher compared to control (p < 0.03). In summary, marrow ROIs with a high level of adiposity were associated with a lower bone mass and changes in cellularity explaining associated bone loss. Further studies assessing the levels of lipotoxicity in areas of high local marrow adiposity and identifying molecular actors involved in this phenomenon are still required.


Assuntos
Tecido Adiposo , Fatores Etários , Medula Óssea , Osteócitos , Animais , Densidade Óssea , Osso e Ossos , Contagem de Células , Feminino , Masculino , Ratos , Ratos Wistar
20.
Alcohol Clin Exp Res ; 44(5): 1088-1098, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32220015

RESUMO

BACKGROUND: Unhealthy consumption of alcohol is a major public health crisis with strong associations between immunological dysfunctions, high vulnerability to infectious disease, anemia, and an increase in the risk of hematological malignancies. However, there is a lack of studies addressing alcohol-induced changes in bone marrow (BM) and hematopoiesis as fundamental aspects of immune system function. METHODS: To address the effect of chronic alcohol consumption on hematopoietic stem and progenitor cells (HSPCs) and the BM niche, we used an established rhesus macaque model of voluntary alcohol drinking. A cohort of young adult male rhesus macaques underwent a standard ethanol self-administration protocol that allowed a choice of drinking alcohol or water 22 hours/day with periods of forced abstinence that elevated subsequent intakes when alcohol availability resumed. Following the last month of forced abstinence, the monkeys were euthanized. HSPCs and bone samples were collected and analyzed in functional assays and by confocal microscopy. RESULTS: HSPCs from alcohol animals exhibited reduced ability to form granulocyte-monocyte and erythroid colonies in vitro. HSPCs also displayed a decrease in mitochondrial oxygen consumption linked to ATP production and basal respiratory capacity. Chronic alcohol use led to vascular remodeling of the BM niche, a reduction in the number of primitive HSPCs, and a shift in localization of HSPCs from an adipose to a perivascular niche. CONCLUSIONS: Our study demonstrates, for the first time, that chronic voluntary alcohol drinking in rhesus macaque monkeys leads to the long-term impairment of HSPC function, a reduction in mitochondrial respiratory activity, and alterations in the BM microenvironment. Further studies are needed to determine whether these changes in hematopoiesis are persistent or adaptive during the abstinent period and whether an initial imprinting to alcohol primes BM to become more vulnerable to future exposure to alcohol.


Assuntos
Abstinência de Álcool , Consumo de Bebidas Alcoólicas/efeitos adversos , Células da Medula Óssea/fisiologia , Etanol/administração & dosagem , Células-Tronco Hematopoéticas/ultraestrutura , Mitocôndrias/fisiologia , Animais , Antígenos CD34/análise , Células da Medula Óssea/patologia , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Macaca mulatta , Masculino , Consumo de Oxigênio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA