Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 195(2): 409-419, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33423112

RESUMO

Plant phenology differs largely among coexisting species within communities that share similar habitat conditions. However, the factors explaining such phenological diversity of plants have not been fully investigated. We hypothesize that species traits, including leaf mass per area (LMA), seed mass, stem tissue mass density (STD), maximum plant height (Hmax), and relative growth rate in height (RGRH), explain variation in plant phenology, and tested this hypothesis in an alpine meadow. Results showed that both LMA and STD were positively correlated with the onset (i.e., beginning) and offset (i.e., ending) times of the four life history events including two reproductive events (flowering and fruiting) and two vegetative events (leafing and senescing). In contrast, RGRH was negatively correlated with the four life phenological events. Moreover, Hmax was positively correlated with reproductive events but not with vegetative events. However, none of the eight phenological events was associated with seed size. In addition, the combination of LMA and STD accounted for 50% of the variation in plant phenologies. Phylogenetic generalized least squares analysis showed plant phylogeny weakened the relationships between species traits vs. phenologies. Phylogeny significantly regulated the variation in the ending but not the beginning of phenologies. Our results indicate that species traits are robust indicators for plant phenologies and can be used to explain the diversity of plant phenologies among co-occurring herbaceous species in grasslands. The findings highlight the important role of the combination of and trade-offs between functional traits in determing plant phenology diversity in the alpine meadow.


Assuntos
Pradaria , Plantas , Ecossistema , Fenótipo , Filogenia
2.
Plant Cell Environ ; 41(1): 245-260, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29047119

RESUMO

Parenchyma represents a critically important living tissue in the sapwood of the secondary xylem of woody angiosperms. Considering various interactions between parenchyma and water transporting vessels, we hypothesize a structure-function relationship between both cell types. Through a generalized additive mixed model approach based on 2,332 woody angiosperm species derived from the literature, we explored the relationship between the proportion and spatial distribution of ray and axial parenchyma and vessel size, while controlling for maximum plant height and a range of climatic factors. When factoring in maximum plant height, we found that with increasing mean annual temperatures, mean vessel diameter showed a positive correlation with axial parenchyma proportion and arrangement, but not for ray parenchyma. Species with a high axial parenchyma tissue fraction tend to have wide vessels, with most of the parenchyma packed around vessels, whereas species with small diameter vessels show a reduced amount of axial parenchyma that is not directly connected to vessels. This finding provides evidence for independent functions of axial parenchyma and ray parenchyma in large vesselled species and further supports a strong role for axial parenchyma in long-distance xylem water transport.


Assuntos
Magnoliopsida/anatomia & histologia , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Clima , Modelos Teóricos , Chuva , Temperatura
3.
Plants (Basel) ; 11(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365302

RESUMO

Agriculture in the populated islands of the Galapagos Archipelago, a protected area due to its unique biodiversity, has been detrimental to its conservation but highly required to meet food necessities. A potential solution to make agricultural farming more sustainable is adopting water-saving technologies (WSTs). Therefore, this study aimed to test the effectiveness of using WSTs such as Groasis Waterboxx® in three of the most valuable crops in the islands through participatory research with the involvement of a group of farmers from the Floreana and Santa Cruz islands and explore a possible transition to more sustainable agricultural practices. Capsicum annuum, Cucumis sativus and Solanum lycopersicum were cultivated using Groasis Waterboxx® and compared to conventional irrigation practices (drip-irrigated controls) to assess the variability of productivity, the number of fruits and individual fruit weight (IFW). In addition, differences in plant traits were analyzed by crop, and island. Results suggested that WSTs such as Groasis Waterboxx® may provide on-farm benefits regarding the yields of the studied traits. From this study, it is difficult to determine whether participation in such a research study will permanently change irrigation practices. However, the participant's responses to the study suggest an increase in their understanding of the use and benefits of WST.

4.
Front Plant Sci ; 11: 536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435256

RESUMO

Climatic factors are considered the major driving forces for variation of flowering phenology among species. Yet, whether flowering phenology of woody species varies with functional traits, growth form, and phylogeny in arid regions is unknown. In the present study, we evaluated the relationships of three characteristics of flowering phenology (i.e., first flowering date, end of flowering date, and flowering duration) against functional traits, growth form, and phylogeny across 59 woody plant species across 3 years in Ürümqi city of the Xinjiang Autonomous Region, in Northwest China. The results showed that, plant functional traits and growth form had significant influences on the variability of flowering phenology among species. The contributions of fruit type (34.7-43.5%) and flower color (30.1-30.7%) to the variability of flowering phenology were larger than those of pollination mode (4.6-14.4%), life form (8.4-14%) and maximum plant height (9.7-13.1%). Trees had the significant correlations in terms of flowering duration against first flowering date and end of flowering date, while shrubs showed the opposite pattern. The values of phylogenetic signal (Blomberg's K) of the three characteristics of flowering phenology ranged from 0.36 to 0.43, which were significantly lower than the expectation of the Brownian motion model. Our results suggested that functional traits, growth form and phylogeny all affected variability of flowering phenology among species. Our results provide a new perspective for correctly evaluating the relationship between global climate change and plant reproduction.

5.
Ecol Evol ; 6(20): 7546-7557, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725419

RESUMO

The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of maximum plant height, reflecting the importance of forest vertical stratification for diversity-carbon relationship. We therefore argue for stronger complementary effects that would be induced also by complementary light-use efficiency of tree and species growing in the understory layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA