Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
BMC Genomics ; 25(1): 417, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678201

RESUMO

BACKGROUND: Between 2020 and 2022, eight calves in a Nebraska herd (composite Simmental, Red Angus, Gelbvieh) displayed exercise intolerance during forced activity. In some cases, the calves collapsed and did not recover. Available sire pedigrees contained a paternal ancestor within 2-4 generations in all affected calves. Pedigrees of the calves' dams were unavailable, however, the cows were ranch-raised and retained from prior breeding seasons, where bulls used for breeding occasionally had a common ancestor. Therefore, it was hypothesized that a de novo autosomal recessive variant was causative of exercise intolerance in these calves. RESULTS: A genome-wide association analysis utilizing SNP data from 6 affected calves and 715 herd mates, followed by whole-genome sequencing of 2 affected calves led to the identification of a variant in the gene PYGM (BTA29:g.42989581G > A). The variant, confirmed to be present in the skeletal muscle transcriptome, was predicted to produce a premature stop codon (p.Arg650*). The protein product of PYGM, myophosphorylase, breaks down glycogen in skeletal muscle. Glycogen concentrations were fluorometrically assayed as glucose residues demonstrating significantly elevated glycogen concentrations in affected calves compared to cattle carrying the variant and to wild-type controls. The absence of the PYGM protein product in skeletal muscle was confirmed by immunohistochemistry and label-free quantitative proteomics analysis; muscle degeneration was confirmed in biopsy and necropsy samples. Elevated skeletal muscle glycogen persisted after harvest, resulting in a high pH and dark-cutting beef, which is negatively perceived by consumers and results in an economic loss to the industry. Carriers of the variant did not exhibit differences in meat quality or any measures of animal well-being. CONCLUSIONS: Myophosphorylase deficiency poses welfare concerns for affected animals and negatively impacts the final product. The association of the recessive genotype with dark-cutting beef further demonstrates the importance of genetics to not only animal health but to the quality of their product. Although cattle heterozygous for the variant may not immediately affect the beef industry, identifying carriers will enable selection and breeding strategies to prevent the production of affected calves.


Assuntos
Estudo de Associação Genômica Ampla , Glicogênio Fosforilase Muscular , Animais , Bovinos , Feminino , Masculino , Doenças dos Bovinos/genética , Genes Recessivos , Glicogênio Fosforilase Muscular/genética , Glicogênio Fosforilase Muscular/deficiência , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
2.
Neurol Sci ; 45(10): 4757-4765, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802689

RESUMO

INTRODUCTION AND METHODS: Myophosphorylase deficiency, also known as McArdle disease or Glycogen Storage Disease type V (GSD-V), is an autosomal recessive metabolic myopathy that results in impaired glycogen breakdown in skeletal muscle. Despite being labelled as a "pure myopathy," cardiac involvement has been reported in some cases, including various cardiac abnormalities such as electrocardiographic changes, coronary artery disease, and cardiomyopathy. Here, we present a unique case of a 72-year-old man with GSD-V and both mitral valvulopathy and coronary artery disease, prompting a systematic review to explore the existing literature on cardiac comorbidities in McArdle disease. RESULTS: Our systematic literature revision identified 7 case reports and 1 retrospective cohort study. The case reports described 7 GSD-V patients, averaging 54.3 years in age, mostly male (85.7%). Coronary artery disease was noted in 57.1% of cases, hypertrophic cardiomyopathy in 28.5%, severe aortic stenosis in 14.3%, and genetic dilated cardiomyopathy in one. In the retrospective cohort study, five out of 14 subjects (36%) had coronary artery disease. DISCUSSION AND CONCLUSION: Despite McArdle disease primarily affecting skeletal muscle, cardiac involvement has been observed, especially coronary artery disease, the frequency of which was moreover found to be higher in McArdle patients than in the background population in a previous study from a European registry. Exaggerated cardiovascular responses during exercise and impaired glycolytic metabolism have been speculated as potential contributors. A comprehensive cardiological screening might be recommended for McArdle disease patients to detect and manage cardiac comorbidities. A multidisciplinary approach is crucial to effectively manage both neurological and cardiac aspects of the disease and improve patient outcomes. Further research is required to establish clearer pathophysiological links between McArdle disease and cardiac manifestations in order to clarify the existing findings.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Humanos , Doença de Depósito de Glicogênio Tipo V/complicações , Masculino , Idoso , Comorbidade , Doença da Artéria Coronariana , Cardiopatias
3.
J Inherit Metab Dis ; 46(6): 1139-1146, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37431283

RESUMO

It is well-established that oral sucrose ingested shortly before exercise improves early exercise tolerance in individuals with McArdle disease. This is by supplying blood-borne glucose for muscle metabolism to compensate for the blocked glycogenolysis. The present study investigated if individuals with McArdle disease could benefit further from repeated sucrose ingestion during prolonged exercise. In this double-blind, placebo-controlled, cross-over study, the participants were randomized to ingest either sucrose or placebo first and subsequently the opposite on two separate days. The participants ingested the drink 10 min before and thrice (after 10, 25, and 40 min) during a 60-min submaximal exercise test on a cycle ergometer. The primary outcome was exercise capacity as indicated by heart rate (HR) and perceived exertion (PE) responses to exercise. Secondary outcomes included changes in blood metabolites, insulin and carbohydrate, and fatty acid oxidation rates during exercise. Nine participants with McArdle disease were included in the study. We confirmed improvement of exercise capacity with oral sucrose vs. placebo during early exercise (pre-second wind) indicated by lower peak HR and PE (p < 0.02). We found no further beneficial effect with repeated sucrose versus placebo ingestion during prolonged exercise, as indicated by no difference in HR or PE post-second wind (p > 0.05). Glucose, lactate, insulin, and carbohydrate oxidation rates increased, and fatty acid oxidation decreased with sucrose versus placebo (p ≤ 0.0002). We can conclude that repeated sucrose ingestion is not recommended during prolonged exercise. This finding can prevent excessive caloric intake and reduce the risk of obesity and insulin resistance.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Insulinas , Humanos , Doença de Depósito de Glicogênio Tipo V/metabolismo , Estudos Cross-Over , Sacarose/uso terapêutico , Glucose , Glicemia/metabolismo , Ácido Láctico , Ácidos Graxos , Insulinas/uso terapêutico , Método Duplo-Cego
4.
J Inherit Metab Dis ; 46(5): 763-777, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37350033

RESUMO

Skeletal muscle is a dynamic organ requiring tight regulation of energy metabolism in order to provide bursts of energy for effective function. Several inborn errors of muscle energy metabolism (IEMEM) affect skeletal muscle function and therefore the ability to initiate and sustain physical activity. Exercise testing can be valuable in supporting diagnosis, however its use remains limited due to the inconsistency in data to inform its application in IEMEM populations. While exercise testing is often used in adults with IEMEM, its use in children is far more limited. Once a physiological limitation has been identified and the aetiology defined, habitual exercise can assist with improving functional capacity, with reports supporting favourable adaptations in adult patients with IEMEM. Despite the potential benefits of structured exercise programs, data in paediatric populations remain limited. This review will focus on the utilisation and limitations of exercise testing and prescription for both adults and children, in the management of McArdle Disease, long chain fatty acid oxidation disorders, and primary mitochondrial myopathies.


Assuntos
Teste de Esforço , Erros Inatos do Metabolismo , Adulto , Criança , Humanos , Músculo Esquelético/metabolismo , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/terapia , Erros Inatos do Metabolismo/metabolismo , Metabolismo Energético/fisiologia , Prescrições
5.
Niger J Clin Pract ; 26(7): 1045-1049, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37635594

RESUMO

McArdle disease is an inherited myopathy that autosomal recessive inheritance and is also known as glycogen storage disease type 5. Myoglobinuria, increase in serum CK level and darkening of urine color secondary to myoglobinuria are typical. Patients may have symptoms associated with increased rhabdomyolysis secondary acute renal failure or hyperkalemia after long and strenuous exercise periods. Today, many studies in the literature have shown that transplantation is superior to dialysis in patients with end-stage renal disease. Our case is a 53-year-old male patient with the diagnosis of McArdle syndrome who was going to have a kidney transplant. The patient had essential hypertension and history of HBsAg+. Total intravenous anesthesia technique was chosen as the anesthesia technique because inhaled anesthetic agents may trigger malignant hyperthermia in the patient. We didn't experience any perioperative complications in our patient. In conclusion, renal transplantation performed with total intravenous in a McArdle syndrome patient may be a simple and effective technique.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Transplante de Rim , Mioglobinúria , Masculino , Humanos , Pessoa de Meia-Idade , Doença de Depósito de Glicogênio Tipo V/complicações , Rim , Anestesia Geral
6.
Muscle Nerve ; 65(5): 568-573, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174518

RESUMO

INTRODUCTION/AIMS: Very few studies analyzing the pattern of muscle involvement in magnetic resonance imaging (MRI) of patients with McArdle disease have been reported to date. We aimed to examine the pattern of muscle fat replacement in patients with McArdle disease. METHODS: We performed a retrospective study including all patients with genetically confirmed McArdle disease followed in our center from January 2010 to March 2021. Clinical data were collected from the medical record. Whole-body MRI was performed as part of the diagnostic evaluation. The distribution of muscle fat replacement and its severity were analyzed. RESULTS: Nine patients were included. Median age at onset was 7 y (range, 5-58) and median age at the time when MRI was performed was 57.3 y (range, 37.2-72.8). At physical examination, four patients had permanent weakness: in three the weakness was limited to paraspinal muscles, whereas in one the weakness involved the paraspinal and proximal upper limb muscles. Muscle MRI showed abnormalities in six of the seven studied patients. In all of them, fat replacement of paravertebral muscles was found. Other muscles frequently affected were the tongue in three, subscapularis in three, and long head of biceps femoris and semimembranosus in two. DISCUSSION: Our findings suggest that paraspinal muscle involvement is common in McArdle disease and support the need to include this disease in the differential diagnosis of the causes of paraspinal muscle weakness. Involvement of the tongue and subscapularis are also frequent in McArdle disease.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Músculos Paraespinais , Adulto , Doença de Depósito de Glicogênio Tipo V/diagnóstico por imagem , Doença de Depósito de Glicogênio Tipo V/patologia , Humanos , Imageamento por Ressonância Magnética , Debilidade Muscular/etiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Músculos Paraespinais/diagnóstico por imagem , Prevalência , Estudos Retrospectivos
7.
J Inherit Metab Dis ; 45(3): 502-516, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150142

RESUMO

Patients with glycogen storage disease type V (GSDV), also known as McArdle disease, have blocked glycogen breakdown due to myophosphorylase deficiency, leading to exercise intolerance, muscle pain, and risk of muscle damage. Blood-derived ketone bodies (KBs) constitute an alternative energy source that could fuel the muscle independent of glycogenolysis. However, except for long-time fasting or ketogenic dieting, KBs are present in low quantities. This led us to explore the effects of a drink containing exogenously produced KBs in the form of D-ß-hydroxybutyrate esters (KE) on exercise capacity and metabolism in patients with GSDV. Eight GSDV patients and four healthy controls (HC) were included in this placebo-controlled, cross-over study where subjects were randomized to receive a KE drink with 395 mgKE/kg or placebo drink on two separate days 25 min before a submaximal cycle exercise test. The primary outcome was exercise capacity as indicated by heart rate response (HR) to exercise. Secondary outcomes included perceived exertion (PE) and measures of KB, carbohydrate, and fat metabolism during exercise. In GSDV, the KE drink vs. placebo increased plasma KBs and KB oxidation (p ≤ 0.0001) but did not improve exercise capacity as judged from HR (p = 0.120) and PE (p = 0.109). In addition, the KE drink lowered plasma glucose, free fatty acids, and lowered lipolytic rate and glucose rate of appearance compared with placebo. Similar results were found in the HC group. The present study indicates that an increase in KB oxidation by oral KE supplementation does not improve exercise capacity in GSDV possibly because of KB-induced inhibition of lipolysis and liver glucose output. Thus, oral KE supplementation alone cannot be recommended as a treatment option for patients with GSDV.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Estudos Cross-Over , Suplementos Nutricionais , Ésteres , Tolerância ao Exercício/fisiologia , Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo V/metabolismo , Humanos , Corpos Cetônicos/metabolismo , Cetonas , Músculo Esquelético/metabolismo
8.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563042

RESUMO

Glycogen storage disease type V (GSDV, McArdle disease) is a rare genetic myopathy caused by deficiency of the muscle isoform of glycogen phosphorylase (PYGM). This results in a block in the use of muscle glycogen as an energetic substrate, with subsequent exercise intolerance. The pathobiology of GSDV is still not fully understood, especially with regard to some features such as persistent muscle damage (i.e., even without prior exercise). We aimed at identifying potential muscle protein biomarkers of GSDV by analyzing the muscle proteome and the molecular networks associated with muscle dysfunction in these patients. Muscle biopsies from eight patients and eight healthy controls showing none of the features of McArdle disease, such as frequent contractures and persistent muscle damage, were studied by quantitative protein expression using isobaric tags for relative and absolute quantitation (iTRAQ) followed by artificial neuronal networks (ANNs) and topology analysis. Protein candidate validation was performed by Western blot. Several proteins predominantly involved in the process of muscle contraction and/or calcium homeostasis, such as myosin, sarcoplasmic/endoplasmic reticulum calcium ATPase 1, tropomyosin alpha-1 chain, troponin isoforms, and alpha-actinin-3, showed significantly lower expression levels in the muscle of GSDV patients. These proteins could be potential biomarkers of the persistent muscle damage in the absence of prior exertion reported in GSDV patients. Further studies are needed to elucidate the molecular mechanisms by which PYGM controls the expression of these proteins.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Proteoma , Biomarcadores/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo V/genética , Humanos , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo
9.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430443

RESUMO

McArdle disease is a rare autosomal recessive disorder caused by mutations in the PYGM gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the PYGM gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of PYGM expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Depósito de Glicogênio Tipo V/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicogênio/metabolismo , Tecnologia
10.
Eat Weight Disord ; 27(8): 3793-3796, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35871462

RESUMO

BACKGROUND: McArdle disease is an autosomal recessive genetic disorder caused by a deficiency of the glycogen phosphorylase (myophosphorylase) enzyme, which muscles need to break down glycogen into glucose for energy. Symptoms include exercise intolerance, with fatigue, muscle pain, and cramps being manifested during the first few minutes of exercise, which may be accompanied by rhabdomyolysis. CASE PRESENTATION: This case report describes for the first time the clinical features, diagnosis and management of a 20 year-old patient with anorexia nervosa and McArdle disease, documented by means of muscle biopsy. CONCLUSION: Anorexia nervosa and McArdle disease interact in a detrimental bidirectional way. In addition, some laboratory parameter alterations (e.g., elevated values of creatine kinase) commonly attributed to the specific features of eating disorders (e.g., excessive exercising) may delay the diagnosis of metabolic muscle diseases. On the other hand, the coexistence of a chronic disease, such as McArdle disease, whose management requires the adoption of a healthy lifestyle, can help to engage patients in actively addressing their eating disorder.


Assuntos
Anorexia Nervosa , Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Humanos , Adulto Jovem , Adulto , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Músculo Esquelético/metabolismo , Anorexia Nervosa/complicações , Anorexia Nervosa/metabolismo , Glicogênio Fosforilase Muscular/genética , Glicogênio Fosforilase Muscular/metabolismo , Glicogênio/metabolismo
11.
Yi Chuan ; 44(11): 1063-1071, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384998

RESUMO

Glycogen storage disease type V is an autosomal recessive genetic disorder caused by muscle glycogen phosphorylase (PYGM) deficiency, which is characterized by exercise intolerance, second wind phenomena and high level of serum creatine kinase. In this study, we reported a Chinese young man with glycogen storage disease type V, with lower extremity weakness after exercise, increased creatine kinase, and slight fat infiltration in the posterior group of thigh muscle by magnetic resonance imaging (MRI). The proband had complex heterozygous PYGM disease-causing mutations, including c.308T>C (p.L103P) variant transmitted from the mother and c.260_261delCT (p.S87Ffs*23) from the father, of which the former was a novel PYGM mutation. This study enriched the PYGM pathogenic gene mutation spectrum, contributed to improve clinicians' understanding of glycogen storage disease type V and provided a reference for further genetic study of the disease.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Humanos , Masculino , Creatina Quinase/genética , Testes Genéticos , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Doença de Depósito de Glicogênio Tipo V/patologia , Mutação
12.
J Inherit Metab Dis ; 44(6): 1409-1418, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534370

RESUMO

McArdle disease is caused by recessive mutations in PYGM gene. The condition is considered to cause a "pure" muscle phenotype with symptoms including exercise intolerance, inability to perform isometric activities, contracture, and acute rhabdomyolysis leading to acute renal failure. This is a retrospective observational study aiming to describe phenotypic and genotypic features of a large cohort of patients with McArdle disease between 2011 and 2019. Data relating to genotype and phenotype, including frequency of rhabdomyolysis, fixed muscle weakness, gout and comorbidities, inclusive of retinal disease (pattern retinal dystrophy) and thyroid disease, were collected. Data from 197 patients are presented. Seven previously unpublished PYGM mutations are described. Exercise intolerance (100%) and episodic rhabdomyolysis (75.6%) were the most common symptoms. Fixed muscle weakness was present in 82 (41.6%) subjects. Unexpectedly, ptosis was observed in 28 patients (14.2%). Hyperuricaemia was a common finding present in 88 subjects (44.7%), complicated by gout in 25% of cases. Thyroid dysfunction was described in 30 subjects (15.2%), and in 3 cases, papillary thyroid cancer was observed. Pattern retinal dystrophy was detected in 15 out of the 41 subjects that underwent an ophthalmic assessment (36.6%). In addition to fixed muscle weakness, ptosis was a relatively common finding. Surprisingly, dysfunction of thyroid and retinal abnormalities were relatively frequent comorbidities. Further studies are needed to better clarify this association, although our finding may have important implication for patient management.


Assuntos
Genótipo , Doença de Depósito de Glicogênio Tipo V/genética , Fenótipo , Adulto , Feminino , Glicogênio , Glicogênio Fosforilase Muscular/genética , Humanos , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Mutação , Distrofias Retinianas/patologia , Estudos Retrospectivos , Rabdomiólise/genética , Doenças da Glândula Tireoide/patologia , Reino Unido
13.
Clin Med Res ; 19(2): 90-93, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33985978

RESUMO

McArdle disease, also known as glycogen storage disease type V, is an autosomal recessive disease due to the absence of myophosphorylase activity, leading to the complete disruption of glycogen breakdown in muscles. We present a rare case of a Caucasian male, aged 26 years, who developed rhabdomyolysis-induced acute renal failure and uremic encephalopathy. Neurological examination and histopathological studies supported the diagnosis of McArdle disease. The severity of his symptoms necessitated urgent hemodialysis, upon which the patient reported improvement in status. Acute renal failure in McArdle disease usually resolves with supportive treatment and maintenance of regular physical activity. Nevertheless, in more severe cases, intensive care with urgent hemodialysis may be needed. A multidisciplinary approach is necessary for the adequate management of similar cases.


Assuntos
Injúria Renal Aguda , Doença de Depósito de Glicogênio Tipo V , Rabdomiólise , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/terapia , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/terapia , Humanos , Masculino , Diálise Renal , Rabdomiólise/diagnóstico , Rabdomiólise/etiologia , Rabdomiólise/terapia
14.
J Inherit Metab Dis ; 43(4): 778-786, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32060930

RESUMO

Glycogen storage disease type V (GSDV) is a rare inborn error of carbohydrate metabolism. Patients present with exercise intolerance due to blocked glycogen breakdown in skeletal muscle. Introducing alternative fuel substrates, such as ketone bodies (KBs), could potentially alleviate muscle symptoms. This pilot study investigates which of three different modified ketogenic diet regimes is optimal for GSDV-patients to follow in a future large-scale study. Participants were randomised to follow one of three diet regimes for 3 weeks (#1: 65%/15%/20%; #2: 75%/15%/10%, or #3: 80%/15%/5%, fat/protein/carbohydrate). The primary outcome was exercise tolerance assessed by heart rate (HR) changes during constant load cycling. Secondary outcomes included levels of ketosis, and changes in perceived exertion and indirect calorimetry measures during exercise. Ten GSDV-patients were included. Eight completed the study. The other two were excluded. Diet #3 showed the highest average KB level (1.1 mmol/L) vs #2 (0.5 mmol/L) and #1 (0.3 mmol/L). Five patients reported subjective symptom relief, all of whom were on diets #2 and #3. All diet regimes seemed to improve fatty acid oxidation rates and exercise capacity as indicated by a small decrease in HR and perceived exertion. The results of this open-label pilot study show that diets #2 and #3 induce ketosis and improve symptoms and exercise capacity in GSDV-patients. Diet #2 had the highest acceptability score and was superior or equal to diet #3 in all other parameters, except level of ketosis. Based on this, we suggest testing diet #2 in a large-scale, placebo-controlled study in GSDV.


Assuntos
Carboidratos/administração & dosagem , Dieta Cetogênica/métodos , Doença de Depósito de Glicogênio Tipo V/dietoterapia , Cetose/etiologia , Adolescente , Adulto , Dieta Cetogênica/efeitos adversos , Tolerância ao Exercício/fisiologia , Feminino , Doença de Depósito de Glicogênio Tipo V/metabolismo , Doença de Depósito de Glicogênio Tipo V/fisiopatologia , Humanos , Corpos Cetônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Projetos Piloto , Adulto Jovem
15.
BMC Geriatr ; 20(1): 451, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153458

RESUMO

BACKGROUND: McArdle disease is a myopathy caused by mutations in PYGM gene that is characterized by reduced or absent activity of myophosphorylase. Reports of patients with concomitant McArdle disease and diabetes are scarce. We report a case of a patient with a late diagnosis of McArdle disease and we postulate that symptoms may be related to hypoinsulinemia. CASE PRESENTATION: This report describes the evolution of an elderly diabetic patient with confirmed diagnosis of McArdle's disease based on the absence of myophosphorylase activity in the analysis of muscle biopsy, and a homozygous mutation in the PYGM gene. The variant - Chr11: 64.525 (p. Asn168*fs) has not been previously described. The diagnosis of McArdle disease was confirmed after two episodes of rhabdomyolysis, at 77 and 81 years of age, as the symptoms were, until then, discrete. The "second-wind phenomenon" was not spontaneously reported, but it was confirmed when directly questioned. We postulate that the later episodes of rhabdomyolysis occurred because of a progressive decrease in insulin production with a consequent reduction in the uptake of blood glucose by muscle cells, thus compromising the cellular energy balance. To our knowledge, this is the first report of recurrent rhabdomyolysis in an elderly diabetic patient with genetically proven McArdle disease. Our initial attempt to reduce insulin resistance with metformin and pioglitazone was not effective, possibly because of inadequate insulinemia. However, an improvement was evident after the administration of low doses of intermediate-acting insulin. CONCLUSIONS: In view of the patient's clinical evolution, we suggest the use of medication that reduces insulin resistance for patients with McArdle disease and type 2 diabetes, pre-diabetes or even normoglycemic metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Rabdomiólise , Idoso , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/complicações , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Doença de Depósito de Glicogênio Tipo V/genética , Humanos , Mutação , Rabdomiólise/complicações , Rabdomiólise/diagnóstico , Rabdomiólise/genética
16.
Proc Natl Acad Sci U S A ; 114(31): 8402-8407, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716914

RESUMO

McArdle disease and mitochondrial myopathy impair muscle oxidative phosphorylation (OXPHOS) by distinct mechanisms: the former by restricting oxidative substrate availability caused by blocked glycogen breakdown, the latter because of intrinsic respiratory chain defects. We applied metabolic profiling to systematically interrogate these disorders at rest, when muscle symptoms are typically minimal, and with exercise, when symptoms of premature fatigue and potential muscle injury are unmasked. At rest, patients with mitochondrial disease exhibit elevated lactate and reduced uridine; in McArdle disease purine nucleotide metabolites, including xanthine, hypoxanthine, and inosine are elevated. During exercise, glycolytic intermediates, TCA cycle intermediates, and pantothenate expand dramatically in both mitochondrial disease and control subjects. In contrast, in McArdle disease, these metabolites remain unchanged from rest; but urea cycle intermediates are increased, likely attributable to increased ammonia production as a result of exaggerated purine degradation. Our results establish skeletal muscle glycogen as the source of TCA cycle expansion that normally accompanies exercise and imply that impaired TCA cycle flux is a central mechanism of restricted oxidative capacity in this disorder. Finally, we report that resting levels of long-chain triacylglycerols in mitochondrial myopathy correlate with the severity of OXPHOS dysfunction, as indicated by the level of impaired O2 extraction from arterial blood during peak exercise. Our integrated analysis of exercise and metabolism provides unique insights into the biochemical basis of these muscle oxidative defects, with potential implications for their clinical management.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Doença de Depósito de Glicogênio Tipo V/patologia , Miopatias Mitocondriais/patologia , Músculo Esquelético/patologia , Adolescente , Adulto , Idoso , Ciclo do Ácido Cítrico/genética , Transporte de Elétrons/fisiologia , Feminino , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo V/genética , Frequência Cardíaca/fisiologia , Humanos , Masculino , Metaboloma/fisiologia , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Miopatias Mitocondriais/genética , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Triglicerídeos/metabolismo , Adulto Jovem
17.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775340

RESUMO

McArdle disease, also known as glycogen storage disease type V (GSDV), is characterized by exercise intolerance, the second wind phenomenon, and high serum creatine kinase activity. Here, we recapitulate PYGM mutations in the population responsible for this disease. Traditionally, McArdle disease has been considered a metabolic myopathy caused by the lack of expression of the muscle isoform of the glycogen phosphorylase (PYGM). However, recent findings challenge this view, since it has been shown that PYGM is present in other tissues than the skeletal muscle. We review the latest studies about the molecular mechanism involved in glycogen phosphorylase activity regulation. Further, we summarize the expression and functional significance of PYGM in other tissues than skeletal muscle both in health and McArdle disease. Furthermore, we examine the different animal models that have served as the knowledge base for better understanding of McArdle disease. Finally, we give an overview of the latest state-of-the-art clinical trials currently being carried out and present an updated view of the current therapies.


Assuntos
Glicogênio Fosforilase/metabolismo , Doença de Depósito de Glicogênio Tipo V/patologia , Músculo Esquelético/patologia , Animais , Doença de Depósito de Glicogênio Tipo V/enzimologia , Humanos , Músculo Esquelético/enzimologia
18.
Pract Neurol ; 19(1): 43-48, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30305378

RESUMO

Rhabdomyolysis is the combination of symptoms (myalgia, weakness and muscle swelling) and a substantial rise in serum creatine kinase (CK) >50 000 IU/L; there are many causes, but here we specifically address exertional rhabdomyolysis. The consequences of this condition can be severe, including acute kidney injury and requirement for higher level care with organ support. Most patients have 'physiological' exertional rhabdomyolysis with no underlying disease; they do not need investigation and should be advised to return to normal activities in a graded fashion. Rarely, exertional rhabdomyolysis may be the initial presentation of underlying muscle disease, and we review how to identify this much smaller group of patients, who do require investigation.


Assuntos
Exercício Físico , Rabdomiólise , Humanos , Rabdomiólise/diagnóstico , Rabdomiólise/etiologia , Rabdomiólise/terapia
19.
Hum Mutat ; 39(10): 1338-1343, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30011114

RESUMO

McArdle disease is a disorder of muscle glycogen metabolism caused by mutations in the PYGM gene, encoding for the muscle-specific isoform of glycogen phosphorylase (M-GP). The activity of this enzyme is completely lost in patients' muscle biopsies, when measured with a standard biochemical test which, does not allow to determine M-GP protein levels. We aimed to determine M-GP protein levels in the muscle of McArdle patients, by studying biopsies of 40 patients harboring a broad spectrum of PYGM mutations and 22 controls. Lack of M-GP protein was found in muscle in the vast majority (95%) of patients, irrespective of the PYGM genotype, including those carrying missense mutations, with few exceptions. M-GP protein biosynthesis is not being produced by PYGM mutations inducing premature termination codons (PTC), neither by most PYGM missense mutations. These findings explain the lack of PYGM genotype-phenotype correlation and have important implications for the design of molecular-based therapeutic approaches.


Assuntos
Estudos de Associação Genética , Doença de Depósito de Glicogênio Tipo V/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Idoso , Alelos , Biópsia , Feminino , Genótipo , Glicogênio Fosforilase Muscular/genética , Doença de Depósito de Glicogênio Tipo V/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA