Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Cell ; 175(5): 1352-1364.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415841

RESUMO

Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor Patched-1/química , Receptor Patched-1/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transdução de Sinais
2.
EMBO J ; 41(2): e106837, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34873731

RESUMO

Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.


Assuntos
Mitocôndrias/metabolismo , Fosfolipídeos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transporte Biológico , Carboxiliases/genética , Carboxiliases/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 300(8): 107564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002677

RESUMO

SARS-CoV-2 is one of the most infectious viruses ever recorded. Despite a plethora of research over the last several years, the viral life cycle is still not well understood, particularly membrane fusion. This process is initiated by the fusion domain (FD), a highly conserved stretch of amino acids consisting of a fusion peptide (FP) and fusion loop (FL), which in synergy perturbs the target cells' lipid membrane to lower the energetic cost necessary for fusion. In this study, through a mutagenesis-based approach, we have investigated the basic residues within the FD (K825, K835, R847, K854) utilizing an in vitro fusion assay and 19F NMR, validated by traditional 13C 15N techniques. Alanine and charge-conserving mutants revealed every basic residue plays a highly specific role within the mechanism of initiating fusion. Intriguingly, K825A led to increased fusogenecity which was found to be correlated to the number of amino acids within helix one, further implicating the role of this specific helix within the FD's fusion mechanism. This work has found basic residues to be important within the FDs fusion mechanism and highlights K825A, a specific mutation made within the FD of the SARS-CoV-2 spike protein, as requiring further investigation due to its potential to contribute to a more virulent strain of SARS-CoV-2.


Assuntos
Fusão de Membrana , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , COVID-19/virologia , COVID-19/metabolismo , Internalização do Vírus
4.
J Biol Chem ; 300(5): 107269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588811

RESUMO

Coenzyme Q10 (CoQ10) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous CoQ10 is often ineffective, likely due to its extreme hydrophobicity and high molecular weight. Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ10 in human cells. We demonstrate that CoQ4 can perform multiple functions of CoQ10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ4 as a supplement for CoQ10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ4 selectively to mitochondria using triphenylphosphonium. Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ4, laying the groundwork for further development.


Assuntos
Ataxia , Mitocôndrias , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona , Humanos , Mitocôndrias/enzimologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Debilidade Muscular/enzimologia , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Células Hep G2
5.
EMBO J ; 40(14): e106438, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34101209

RESUMO

Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high-resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure-guided mutations demonstrate the importance of both types of protein-lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteína X Associada a bcl-2/metabolismo , Apoptose/fisiologia , Humanos , Bicamadas Lipídicas/metabolismo
6.
EMBO J ; 40(20): e107966, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34520050

RESUMO

Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity.


Assuntos
Acetil-CoA Carboxilase/genética , Ácido Graxo Sintases/genética , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Fosfatidilcolinas/deficiência , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilase/metabolismo , Cromossomos Fúngicos , Ácido Graxo Sintases/metabolismo , Retroalimentação Fisiológica , Regulação Fúngica da Expressão Gênica , Bicamadas Lipídicas/química , Metabolismo dos Lipídeos/genética , Fluidez de Membrana , Lipídeos de Membrana/química , Mutação Puntual , Saccharomyces cerevisiae/genética
7.
Plant Physiol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190806

RESUMO

Plants require phosphate (Pi) for proper growth and development but often face scarcity of this vital nutrient in the soil. Pi-starvation triggers membrane lipid remodeling to utilize the membrane phospholipid-bound Pi in plants. In this process, phospholipids are replaced by non-Pi-containing galactolipids (MGDG, DGDG) and sulfolipids. The galactolipids ratio (MGDG:DGDG) is suggested to influence jasmonic acid (JA) biosynthesis. However, how the MGDG:DGDG ratio, JA levels, and root growth are coordinated under Pi deficiency in rice (Oryza sativa) remains unknown. Here, we characterized DGDG synthase 1 (OsDGD1) for its role in regulating root development by maintaining metabolic flux for JA biosynthesis. We showed that OsDGD1 is responsive under low Pi and is under the direct control of Phosphate Starvation Response 2 (OsPHR2), the master regulator of low Pi adaptations. Further, OsDGD1 knockout (KO) lines showed marked phenotypic differences compared to the wild type (WT), including a significant reduction in root length and biomass, leading to reduced Pi uptake. Further, lipidome analyses revealed reduced DGDG levels in the KO line, leading to reduced membrane remodeling, thus affecting P utilization efficiency. We also observed an increase in the MGDG: DGDG ratio in KO lines, which enhanced the endogenous JA levels and signaling. This imbalance of JA in KO plants led to changes in auxin levels, causing drastic root growth inhibition. These findings indicate the critical role of OsDGD1 in maintaining optimum levels of JA during Pi deficiency for conducive root growth. Besides acting as signaling molecules and structural components, our study widens the role of lipids as metabolic flux controllers for phytohormone biosynthesis.

8.
J Proteome Res ; 23(4): 1188-1199, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484338

RESUMO

Organisms respond to dietary and environmental challenges by altering the molecular composition of their glycerolipids and glycerophospholipids (GPLs), which may favorably adjust the physicochemical properties of lipid membranes. However, how lipidome changes affect the membrane proteome and, eventually, the physiology of specific organs is an open question. We addressed this issue in Drosophila melanogaster, which is not able to synthesize sterols and polyunsaturated fatty acids but can acquire them from food. We developed a series of semisynthetic foods to manipulate the length and unsaturation of fatty acid moieties in GPLs and singled out proteins whose abundance is specifically affected by membrane lipid unsaturation in the Drosophila eye. Unexpectedly, we identified a group of proteins that have muscle-related functions and increased their abundances under unsaturated eye lipidome conditions. In contrast, the abundance of two stress response proteins, Turandot A and Smg5, is decreased by lipid unsaturation. Our findings could guide the genetic dissection of homeostatic mechanisms that maintain visual function when the eye is exposed to environmental and dietary challenges.


Assuntos
Drosophila , Proteoma , Animais , Proteoma/genética , Drosophila melanogaster/genética , Lipidômica , Ácidos Graxos , Glicerofosfolipídeos
9.
J Biol Chem ; 299(6): 104756, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116705

RESUMO

Phosphatidylserine (PS) synthase from Candida albicans, encoded by the CHO1 gene, has been identified as a potential drug target for new antifungals against systemic candidiasis. Rational drug design or small molecule screening are effective ways to identify specific inhibitors of Cho1, but both will be facilitated by protein purification. Due to the transmembrane nature of Cho1, methods were needed to solubilize and purify the native form of Cho1. Here, we used six non-ionic detergents and three styrene maleic acids (SMAs) to solubilize an HA-tagged Cho1 protein from the total microsomal fractions. Blue native PAGE and immunoblot analysis revealed a single band corresponding to Cho1 in all detergent-solubilized fractions, while two bands were present in the SMA2000-solubilized fraction. Our enzymatic assay suggests that digitonin- or DDM-solubilized enzyme has the most PS synthase activity. Pull-downs of HA-tagged Cho1 from the digitonin-solubilized fraction reveal an apparent MW of Cho1 consistent with a hexamer. Furthermore, negative-staining electron microscopy analysis and AlphaFold2 structure prediction modeling suggest the hexamer is composed of a trimer of dimers. We purified Cho1 protein to near-homogeneity as a hexamer using affinity chromatography and TEV protease treatment, and optimized Cho1 enzyme activity for manganese and detergent concentrations, temperature (24 °C), and pH (8.0). The purified Cho1 has a Km for its substrate CDP-diacylglycerol of 72.20 µM with a Vmax of 0.079 nmol/(µg∗min) while exhibiting a sigmoidal kinetic curve for its other substrate serine, indicating cooperative binding. Purified hexameric Cho1 can potentially be used in downstream structure determination and small drug screening.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase , Candida albicans , Candida albicans/enzimologia , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química , Detergentes/farmacologia , Digitonina/metabolismo
10.
J Biol Chem ; 299(11): 105323, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805138

RESUMO

Human respiratory syncytial virus (RSV) is the leading cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. The elderly and the immunosuppressed are also affected. It is a major unmet target for vaccines and antiviral drugs. RSV assembles and buds from the host cell plasma membrane by forming infectious viral particles which are mostly filamentous. A key interaction during RSV assembly is the interaction of the matrix (M) protein with cell plasma membrane lipids forming a layer at assembly sites. Although the structure of RSV M protein dimer is known, it is unclear how the viral M proteins interact with cell membrane lipids, and with which one, to promote viral assembly. Here, we demonstrate that M proteins are able to cluster at the plasma membrane by selectively binding with phosphatidylserine (PS). Our in vitro studies suggest that M binds PS lipid as a dimer and upon M oligomerization, PS clustering is observed. In contrast, the presence of other negatively charged lipids like PI(4, 5)P2 does not enhance M binding beyond control zwitterionic lipids, while cholesterol negatively affects M interaction with membrane lipids. Moreover, we show that the initial binding of the RSV M protein with PS lipids is independent of the cytoplasmic tail of the fusion (F) glycoprotein (FCT). Here, we highlight that M binding on membranes occurs directly through PS lipids, this interaction is electrostatic in nature, and M oligomerization generates PS clusters.


Assuntos
Vírus Sincicial Respiratório Humano , Humanos , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Virais de Fusão/metabolismo , Vírion/metabolismo , Montagem de Vírus , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Linhagem Celular Tumoral
11.
J Biol Chem ; 299(6): 104745, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37094699

RESUMO

The accessibility of sterols in mammalian cells to exogenous sterol-binding agents has been well-described previously, but sterol accessibility in distantly related protozoa is unclear. The human pathogen Leishmania major uses sterols and sphingolipids distinct from those used in mammals. Sterols in mammalian cells can be sheltered from sterol-binding agents by membrane components, including sphingolipids, but the surface exposure of ergosterol in Leishmania remains unknown. Here, we used flow cytometry to test the ability of the L. major sphingolipids inositol phosphorylceramide (IPC) and ceramide to shelter ergosterol by preventing binding of the sterol-specific toxins streptolysin O and perfringolysin O and subsequent cytotoxicity. In contrast to mammalian systems, we found that Leishmania sphingolipids did not preclude toxin binding to sterols in the membrane. However, we show that IPC reduced cytotoxicity and that ceramide reduced perfringolysin O- but not streptolysin O-mediated cytotoxicity in cells. Furthermore, we demonstrate ceramide sensing was controlled by the toxin L3 loop, and that ceramide was sufficient to protect L. major promastigotes from the anti-leishmaniasis drug amphotericin B. Based on these results, we propose a mechanism whereby pore-forming toxins engage additional lipids like ceramide to determine the optimal environment to sustain pore formation. Thus, L. major could serve as a genetically tractable protozoan model organism for understanding toxin-membrane interactions.


Assuntos
Membrana Celular , Ceramidas , Leishmania major , Esfingolipídeos , Ceramidas/química , Ergosterol/química , Esfingolipídeos/química , Esteróis/química , Membrana Celular/química
12.
J Biol Chem ; 299(6): 104799, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164154

RESUMO

The human AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 are multipass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labeled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified coimmunoprecipitated proteins using mass spectrometry. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely, with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Membrana Celular , Ácidos Graxos , Fluidez de Membrana , Receptores de Adiponectina , Animais , Humanos , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo , Células HEK293 , Fluidez de Membrana/fisiologia , Fosfolipídeos/metabolismo , Receptores de Adiponectina/metabolismo , Ligação Proteica
13.
Neuroimage ; 296: 120666, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830440

RESUMO

Direct imaging of semi-solid lipids, such as myelin, is of great interest as a noninvasive biomarker of neurodegenerative diseases. Yet, the short T2 relaxation times of semi-solid lipid protons hamper direct detection through conventional magnetic resonance imaging (MRI) pulse sequences. In this study, we examined whether a three-dimensional ultrashort echo time (3D UTE) sequence can directly acquire signals from membrane lipids. Membrane lipids from red blood cells (RBC) were collected from commercially available blood as a general model of the myelin lipid bilayer and subjected to D2O exchange and freeze-drying for complete water removal. Sufficiently high MR signals were detected with the 3D UTE sequence, which showed an ultrashort T2* of ∼77-271 µs and a short T1 of ∼189 ms for semi-solid RBC membrane lipids. These measurements can guide designing UTE-based sequences for direct in vivo imaging of membrane lipids.


Assuntos
Membrana Eritrocítica , Imageamento por Ressonância Magnética , Lipídeos de Membrana , Bainha de Mielina , Humanos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Lipídeos de Membrana/química , Liofilização , Eritrócitos/metabolismo
14.
Curr Issues Mol Biol ; 46(9): 10200-10217, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39329960

RESUMO

The complex structure of glycosphingolipids (GSLs) supports their important role in cell function as modulators of growth factor receptors and glutamine transporters in plasma membranes. The aberrant composition of clustered GSLs within signaling platforms, so-called lipid rafts, inevitably leads to tumorigenesis due to disturbed growth factor signal transduction and excessive uptake of glutamine and other molecules needed for increased energy and structural molecule cell supply. GSLs are also involved in plasma membrane processes such as cell adhesion, and their transition converts cells from epithelial to mesenchymal with features required for cell migration and metastasis. Glutamine activates the mechanistic target of rapamycin complex 1 (mTORC1), resulting in nucleotide synthesis and proliferation. In addition, glutamine contributes to the cancer stem cell GD2 ganglioside-positive phenotype in the triple-negative breast cancer cell line MDA-MB-231. Thieno[2,3-b]pyridine derivative possesses higher cytotoxicity against MDA-MB-231 than against MCF-7 cells and induces a shift to aerobic metabolism and a decrease in S(6)nLc4Cer GSL-positive cancer stem cells in the MDA-MB-231 cell line. In this review, we discuss findings in MDA-MB-231, MCF-7, and other breast cancer cell lines concerning their differences in growth factor receptors and recent knowledge of the main biochemical pathways delivering distinct glycosphingolipid patterns during tumorigenesis and therapy.

15.
J Cell Sci ; 135(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35791809

RESUMO

The cytoplasmic domain of receptor tyrosine kinases (RTKs) plays roles as a kinase and a protein scaffold; however, the allocation of these two functions is not fully understood. Here, we analyzed the assembly of the transmembrane (TM)-juxtamembrane (JM) region of EGFR, one of the best studied members of RTKs, by combining single-pair fluorescence resonance energy transfer (FRET) imaging and a nanodisc technique. The JM domain of EGFR contains a threonine residue (T654) that is phosphorylated after ligand association. We observed that the TM-JM peptides of EGFR form anionic lipid-induced dimers and cholesterol-induced oligomers. The two forms involve distinct molecular interactions, with a bias toward oligomer formation upon threonine phosphorylation. We further analyzed the functions and oligomerization of whole EGFR molecules, with or without a substitution of T654 to alanine, in living cells. The results suggested an autoregulatory mechanism in which T654 phosphorylation causes a switch of the major function of EGFR from kinase-activating dimers to scaffolding oligomers.


Assuntos
Lipídeos de Membrana , Treonina , Receptores ErbB/genética , Receptores ErbB/metabolismo , Lipídeos de Membrana/metabolismo , Fosforilação , Transdução de Sinais , Treonina/metabolismo
16.
Appl Environ Microbiol ; : e0114624, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287399

RESUMO

In the actual industrial production process, the efficient biosynthesis and secretion of Monascus pigments (MPs) tend to take place under abiotic stresses, which often result in an imbalance of cell homeostasis. The present study aimed to thoroughly describe the changes in lipid profiles in Monascus purpureus by absolute quantitative lipidomics and tandem mass tag-based quantitative proteomics. The results showed that ammonium chloride stress (15 g/L) increased MP production while inhibiting ergosterol biosynthesis, leading to an imbalance in membrane lipid homeostasis in Monascus. In response to the imbalance of lipid homeostasis, the regulation mechanism of phospholipids in Monascus was implemented, including the inhibition of lysophospholipids production, maintenance of the ratio of PC/PE, and improvement of the biosynthesis of phosphatidylglycerol, phosphatidylserine, and cardiolipin with high saturated and long carbon chain fatty acids through the CDP-DG pathway rather than the Kennedy pathway. The inhibition of lysophospholipid biosynthesis was attributed to the upregulated expression of protein and its gene related to lysophospholipase NTE1, while maintenance of the PC/PE ratio was achieved by the upregulated expression of protein and its gene related to CTP: phosphoethanolamine cytidylyltransferase and phosphatidylethanolamine N-methyltransferase in the Kennedy pathway. These findings provide insights into the regulation mechanism of MP biosynthesis from new perspectives.IMPORTANCEMonascus is important in food microbiology as it produces natural colorants known as Monascus pigments (MPs). The industrial production of MPs has been achieved by liquid fermentation, in which the nitrogen source (especially ammonium chloride) is a key nutritional parameter. Previous studies have investigated the regulatory mechanisms of substance and energy metabolism, as well as the cross-protective mechanisms in Monascus in response to ammonium chloride stress. Our research in this work demonstrated that ammonium chloride stress also caused an imbalance of membrane lipid homeostasis in Monascus due to the inhibition of ergosterol biosynthesis. We found that the regulation mechanism of phospholipids in Monascus was implemented, including inhibition of lysophospholipids production, maintenance of the ratio of PC/PE, and improvement of biosynthesis of phosphatidylglycerol, phosphatidylserine, and cardiolipin with high saturated and long carbon chain fatty acids through the CDP-DG pathway. These findings further refine the regulatory mechanisms of MP production and secretion.

17.
J Pediatr ; 274: 114175, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945444

RESUMO

OBJECTIVE: To investigate the effects of gestational age (GA) and phototherapy on the plasma metabolite profile of preterm infants with neonatal hyperbilirubinemia (NHB). STUDY DESIGN: From a cohort of prospectively enrolled infants born preterm (n = 92), plasma samples of very preterm (VPT; GA, 28 + 0 to 31 + 6 weeks, n = 27) and moderate/late preterm (M/LPT; GA, 32 + 0 to 35 + 6 weeks, n = 33) infants requiring phototherapy for NHB were collected prior to the initiation of phototherapy and 24 hours after starting phototherapy. An additional sample was collected 48 hours after starting phototherapy in a randomly selected subset (n = 30; VPT n = 15; M/LPT n = 15). Metabolite profiles were determined using ultraperformance liquid chromatography tandem mass spectroscopy. Two-way ANCOVA was used to identify metabolites that differed between GA groups and timepoints after adjusting for total serum bilirubin levels (false discovery rate q-value < 0.05). Top impacted pathways were identified using pathway over-representation analysis. RESULTS: Phototherapy was initiated at lower total serum bilirubin (mean ± SD mg/dL) levels in VPT compared with M/LPT infants (7.3 ± 1.4 vs 9.9 ± 1.9, P < .01). We identified 664 metabolites that were significant for a phototherapy effect, 191 metabolites significant for GA, and 46 metabolites significant for GA × phototherapy interaction (false discovery rate q-value < 0.05). Longer duration phototherapy had a larger mean effect size (24 hours postphototherapy: d = 0.36; 48 hours postphototherapy: d = 0.43). Top pathways affected by phototherapy included membrane lipid metabolism, one-carbon metabolism, creatine biosynthesis, and oligodendrocyte differentiation. CONCLUSION: Phototherapy alters the plasma metabolite profile more than GA in preterm infants with NHB, affecting pathways related to lipid and one-carbon metabolism, energy biosynthesis, and oligodendrocyte differentiation.

18.
J Exp Bot ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324623

RESUMO

Heat stress (HS) adversely impacts plant growth, development and grain yield. Heat shock factors (Hsf), especially HsfA2 subclass, play a pivotal role in the transcriptional regulation of genes in response to HS. In this study, the coding sequence of maize ZmHsf17 was cloned. ZmHsf17 contains conserved domains: DNA binding, oligomerization and transcriptional activation. The protein was nuclear localized and had transcription activation activity. Yeast two hybrid and split luciferase complementary assays confirmed the interaction of ZmHsf17 with members of the maize HsfA2 subclass. Overexpression of ZmHsf17 in maize significantly increased chlorophyll content and net photosynthesis rate of maize leaves, and enhanced the stability of cellular membranes. Through integrative analysis of ChIP-seq and RNA-seq datasets, ZmPAH1, encoding phosphatidic acid phosphohydrolase of lipid metabolic pathways, was identified as a target gene of ZmHsf17. The promoter fragment of ZmPAH1 was bound by ZmHsf17 in protein-DNA interaction experiments in vivo and in vitro. Lipidomic data also indicates that the overexpression of ZmHsf17 increased levels of some critical membrane lipid components of maize leaves under HS. This research provides new insights into the role of the ZmHsf17-ZmPAH1 module in regulating thermotolerance in maize.

19.
J Exp Bot ; 75(17): 5251-5266, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38708855

RESUMO

Once regarded as mere membrane building blocks, lipids are now recognized as diverse and intricate players that mold the functions, identities, and responses of cellular membranes. Although the interactions of lipids with integral and peripheral membrane proteins are crucial for their localization, activity, and function, how proteins bind lipids is still far from being thoroughly explored. Describing and characterizing these dynamic protein-lipid interactions is thus essential to understanding the membrane-associated processes. Here we review the current range of experimental techniques employed to study plant protein-lipid interactions, integrating various methods. We summarize the principles, advantages, and limitations of classical in vitro biochemical approaches, including protein-lipid overlays and various liposome binding assays, and complement them with in vivo microscopic techniques centered around the use of genetically encoded lipid sensors and pharmacological or genetic membrane lipid manipulation tools. We also highlight several emerging techniques still awaiting their advancement into plant membrane research and emphasize the need to use complementary experimental strategies as key for elucidating the mechanistic roles of protein-lipid interactions in plant cell biology.


Assuntos
Membrana Celular , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Plantas/metabolismo , Proteínas de Membrana/metabolismo
20.
Food Microbiol ; 121: 104496, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637067

RESUMO

Phospholipase D plays a critical regulatory role in the pathogenicity of filamentous fungi. However, the molecular mechanism of PLD regulating the pathogenicity of filamentous fungi has not been reported. In this research, the previously constructed TrPLD1 and TrPLD2 (TrPLDs) mutants were used as test strains. Firstly, the function of TrPLDs in Trichothecium roseum was studied. Then, the effects of TrPLDs on the pathogenicity of T. roseum and the quality of the inoculated apples were verified. The results suggested that the deletion of TrPLD1 delayed the spore germination of ΔTrPLD1 and inhibited germ tube elongation by down-regulating the expressions of TrbrlA, TrabaA and TrwetA. By down-regulating the extracellular enzyme-coding gene expressions, ΔTrPLD1 inhibited the degradation of apple fruit cell wall and the change of fatty acid content during infection, reduced the cell membrane permeability and malondialdehyde (MDA) content of apple fruit, thereby maintaining the integrity of fruit cell membrane, and reduced the pathogenicity of ΔTrPLD1 to apple and kept the quality of apple. However, ΔTrPLD2 did not have a significant effect on the infection process of apple fruit by the pathogen.


Assuntos
Hypocreales , Malus , Malus/microbiologia , Frutas/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA