Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.188
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(7): 1826-1847.e31, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296702

RESUMO

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2+ γδ T lymphocytes, and of Mycobacterium-non reactive classic TH1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8+ αß T and non-classic CD4+ αß TH1∗ lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2+ γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8+ αß T, and CD4+ αß TH1∗ cells unable to compensate for this deficit.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Interferon gama/imunologia , Mycobacterium/imunologia , Proteínas com Domínio T/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem da Célula , Pré-Escolar , Cromatina/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Células Dendríticas/metabolismo , Epigênese Genética , Feminino , Homozigoto , Humanos , Mutação INDEL/genética , Lactente , Interferon gama/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Mutação com Perda de Função/genética , Masculino , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/microbiologia , Linhagem , Proteínas com Domínio T/química , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Linfócitos T Auxiliares-Indutores/imunologia , Transcriptoma/genética
2.
Cell ; 177(7): 1814-1826.e15, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31178120

RESUMO

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.


Assuntos
Comportamento Animal , Caenorhabditis elegans , Neurônios/metabolismo , RNA de Helmintos , Pequeno RNA não Traduzido , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neurônios/citologia , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , Pequeno RNA não Traduzido/biossíntese , Pequeno RNA não Traduzido/genética
3.
Cell ; 171(2): 427-439.e21, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985565

RESUMO

Parrot feathers contain red, orange, and yellow polyene pigments called psittacofulvins. Budgerigars are parrots that have been extensively bred for plumage traits during the last century, but the underlying genes are unknown. Here we use genome-wide association mapping and gene-expression analysis to map the Mendelian blue locus, which abolishes yellow pigmentation in the budgerigar. We find that the blue trait maps to a single amino acid substitution (R644W) in an uncharacterized polyketide synthase (MuPKS). When we expressed MuPKS heterologously in yeast, yellow pigments accumulated. Mass spectrometry confirmed that these yellow pigments match those found in feathers. The R644W substitution abolished MuPKS activity. Furthermore, gene-expression data from feathers of different bird species suggest that parrots acquired their colors through regulatory changes that drive high expression of MuPKS in feather epithelia. Our data also help formulate biochemical models that may explain natural color variation in parrots. VIDEO ABSTRACT.


Assuntos
Proteínas Aviárias/genética , Plumas/fisiologia , Melopsittacus/genética , Pigmentos Biológicos/biossíntese , Polienos/metabolismo , Policetídeo Sintases/genética , Sequência de Aminoácidos , Animais , Proteínas Aviárias/metabolismo , Plumas/anatomia & histologia , Plumas/química , Expressão Gênica , Genoma , Estudo de Associação Genômica Ampla , Melopsittacus/anatomia & histologia , Melopsittacus/fisiologia , Pigmentação , Policetídeo Sintases/metabolismo , Polimorfismo de Nucleotídeo Único , Regeneração , Alinhamento de Sequência
4.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863252

RESUMO

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Doenças do Sistema Imunitário/genética , Alelos , Diferenciação Celular , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/patologia , Humanos , Doenças do Sistema Imunitário/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , População Branca/genética
5.
Immunol Rev ; 322(1): 28-52, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38069482

RESUMO

Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.


Assuntos
Síndromes de Imunodeficiência , Micoses , Humanos , Genômica , Fungos , Autoanticorpos
6.
Trends Genet ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39271396

RESUMO

Meiosis is essential for eukaryotic reproduction and provides the basis for Mendel's segregation laws. A recent study by Lacy et al. identified a significant deviation from these laws in a clonal ant, hinting at a potentially overlooked meiotic feature. This discovery may have broader implications for recombination in nonclonal eukaryotes.

7.
Am J Hum Genet ; 111(8): 1782-1795, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39053457

RESUMO

In Mendelian randomization, two single SNP-trait correlation-based methods have been developed to infer the causal direction between an exposure (e.g., a gene) and an outcome (e.g., a trait), called MR Steiger's method and its recent extension called Causal Direction-Ratio (CD-Ratio). Here we propose an approach based on R2, the coefficient of determination, to combine information from multiple (possibly correlated) SNPs to simultaneously infer the presence and direction of a causal relationship between an exposure and an outcome. Our proposed method generalizes Steiger's method from using a single SNP to multiple SNPs as IVs. It is especially useful in transcriptome-wide association studies (TWASs) (and similar applications) with typically small sample sizes for gene expression (or another molecular trait) data, providing a more flexible and powerful approach to inferring causal directions. It can be applied to GWAS summary data with a reference panel. We also discuss the influence of invalid IVs and introduce a new approach called R2S to select and remove invalid IVs (if any) to enhance the robustness. We compared the performance of the proposed method with existing methods in simulations to demonstrate its advantages. We applied the methods to identify causal genes for high/low-density lipoprotein cholesterol (HDL/LDL) using the individual-level GTEx gene expression data and UK Biobank GWAS data. The proposed method was able to confirm some well-known causal genes while identifying some novel ones. Additionally, we illustrated an application of the proposed method to GWAS summary to infer causal relationships between HDL/LDL and stroke/coronary artery disease (CAD).


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Transcriptoma , Humanos , Estudo de Associação Genômica Ampla/métodos , Transcriptoma/genética , Análise da Randomização Mendeliana/métodos , Modelos Genéticos , LDL-Colesterol/genética , LDL-Colesterol/sangue , Fenótipo
8.
Am J Hum Genet ; 111(1): 150-164, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181731

RESUMO

Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Recursos Comunitários , Multiômica , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Análise da Randomização Mendeliana
9.
Am J Hum Genet ; 111(1): 165-180, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181732

RESUMO

Mendelian randomization uses genetic variants as instrumental variables to make causal inferences on the effect of an exposure on an outcome. Due to the recent abundance of high-powered genome-wide association studies, many putative causal exposures of interest have large numbers of independent genetic variants with which they associate, each representing a potential instrument for use in a Mendelian randomization analysis. Such polygenic analyses increase the power of the study design to detect causal effects; however, they also increase the potential for bias due to instrument invalidity. Recent attention has been given to dealing with bias caused by correlated pleiotropy, which results from violation of the "instrument strength independent of direct effect" assumption. Although methods have been proposed that can account for this bias, a number of restrictive conditions remain in many commonly used techniques. In this paper, we propose a Bayesian framework for Mendelian randomization that provides valid causal inference under very general settings. We propose the methods MR-Horse and MVMR-Horse, which can be performed without access to individual-level data, using only summary statistics of the type commonly published by genome-wide association studies, and can account for both correlated and uncorrelated pleiotropy. In simulation studies, we show that the approach retains type I error rates below nominal levels even in high-pleiotropy scenarios. We demonstrate the proposed approaches in applied examples in both univariable and multivariable settings, some with very weak instruments.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Animais , Cavalos , Teorema de Bayes , Simulação por Computador , Herança Multifatorial
10.
Am J Hum Genet ; 111(8): 1736-1749, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39053459

RESUMO

Mendelian randomization (MR) provides valuable assessments of the causal effect of exposure on outcome, yet the application of conventional MR methods for mapping risk genes encounters new challenges. One of the issues is the limited availability of expression quantitative trait loci (eQTLs) as instrumental variables (IVs), hampering the estimation of sparse causal effects. Additionally, the often context- or tissue-specific eQTL effects challenge the MR assumption of consistent IV effects across eQTL and GWAS data. To address these challenges, we propose a multi-context multivariable integrative MR framework, mintMR, for mapping expression and molecular traits as joint exposures. It models the effects of molecular exposures across multiple tissues in each gene region, while simultaneously estimating across multiple gene regions. It uses eQTLs with consistent effects across more than one tissue type as IVs, improving IV consistency. A major innovation of mintMR involves employing multi-view learning methods to collectively model latent indicators of disease relevance across multiple tissues, molecular traits, and gene regions. The multi-view learning captures the major patterns of disease relevance and uses these patterns to update the estimated tissue relevance probabilities. The proposed mintMR iterates between performing a multi-tissue MR for each gene region and joint learning the disease-relevant tissue probabilities across gene regions, improving the estimation of sparse effects across genes. We apply mintMR to evaluate the causal effects of gene expression and DNA methylation for 35 complex traits using multi-tissue QTLs as IVs. The proposed mintMR controls genome-wide inflation and offers insights into disease mechanisms.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Locos de Características Quantitativas , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Especificidade de Órgãos/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
11.
Am J Hum Genet ; 111(8): 1717-1735, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39059387

RESUMO

Mendelian randomization (MR), which utilizes genetic variants as instrumental variables (IVs), has gained popularity as a method for causal inference between phenotypes using genetic data. While efforts have been made to relax IV assumptions and develop new methods for causal inference in the presence of invalid IVs due to confounding, the reliability of MR methods in real-world applications remains uncertain. Instead of using simulated datasets, we conducted a benchmark study evaluating 16 two-sample summary-level MR methods using real-world genetic datasets to provide guidelines for the best practices. Our study focused on the following crucial aspects: type I error control in the presence of various confounding scenarios (e.g., population stratification, pleiotropy, and family-level confounders like assortative mating), the accuracy of causal effect estimates, replicability, and power. By comprehensively evaluating the performance of compared methods over one thousand exposure-outcome trait pairs, our study not only provides valuable insights into the performance and limitations of the compared methods but also offers practical guidance for researchers to choose appropriate MR methods for causal inference.


Assuntos
Benchmarking , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Análise da Randomização Mendeliana/métodos , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Variação Genética , Causalidade , Polimorfismo de Nucleotídeo Único , Modelos Genéticos
12.
Am J Hum Genet ; 111(9): 1970-1993, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106866

RESUMO

The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.


Assuntos
Proteína de Replicação C , Humanos , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Masculino , Células HeLa , Feminino , Fenótipo , Replicação do DNA/genética , Adulto , Mutação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Alelos
13.
Am J Hum Genet ; 111(1): 96-118, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
14.
Am J Hum Genet ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39226897

RESUMO

Retinitis pigmentosa (RP) is a Mendelian disease characterized by gradual loss of vision, due to the progressive degeneration of retinal cells. Genetically, it is highly heterogeneous, with pathogenic variants identified in more than 100 genes so far. Following a large-scale sequencing screening, we identified five individuals (four families) with recessive and non-syndromic RP, carrying as well bi-allelic DNA changes in COQ8B, a gene involved in the biosynthesis of coenzyme Q10. Specifically, we detected compound heterozygous assortments of five disease-causing variants (c.187C>T [p.Arg63Trp], c.566G>A [p.Trp189Ter], c.1156G>A [p.Asp386Asn], c.1324G>A [p.Val442Met], and c.1560G>A [p.Trp520Ter]), all segregating with disease according to a recessive pattern of inheritance. Cell-based analysis of recombinant proteins deriving from these genotypes, performed by target engagement assays, showed in all cases a significant decrease in ligand-protein interaction compared to the wild type. Our results indicate that variants in COQ8B lead to recessive non-syndromic RP, possibly by impairing the biosynthesis of coenzyme Q10, a key component of oxidative phosphorylation in the mitochondria.

15.
Am J Hum Genet ; 111(1): 70-81, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38091987

RESUMO

Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Estudos Retrospectivos , Mutação/genética , Epilepsia/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
16.
Am J Hum Genet ; 111(7): 1481-1493, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38897203

RESUMO

Type 2 diabetes (T2D) is a major risk factor for heart failure (HF) and has elevated incidence among individuals with HF. Since genetics and HF can independently influence T2D, collider bias may occur when T2D (i.e., collider) is controlled for by design or analysis. Thus, we conducted a genome-wide association study (GWAS) of diabetes-related HF with correction for collider bias. We first performed a GWAS of HF to identify genetic instrumental variables (GIVs) for HF and to enable bidirectional Mendelian randomization (MR) analysis between T2D and HF. We identified 61 genomic loci, significantly associated with all-cause HF in 114,275 individuals with HF and over 1.5 million controls of European ancestry. Using a two-sample bidirectional MR approach with 59 and 82 GIVs for HF and T2D, respectively, we estimated that T2D increased HF risk (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.04-1.10), while HF also increased T2D risk (OR 1.60, 95% CI 1.36-1.88). Then we performed a GWAS of diabetes-related HF corrected for collider bias due to the study design of index cases. After removing the spurious association of TCF7L2 locus due to collider bias, we identified two genome-wide significant loci close to PITX2 (chromosome 4) and CDKN2B-AS1 (chromosome 9) associated with diabetes-related HF in the Million Veteran Program and replicated the associations in the UK Biobank. Our MR findings provide strong evidence that HF increases T2D risk. As a result, collider bias leads to spurious genetic associations of diabetes-related HF, which can be effectively corrected to identify true positive loci.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Análise da Randomização Mendeliana , Humanos , Insuficiência Cardíaca/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Masculino , Feminino , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Pessoa de Meia-Idade , Fatores de Risco , Idoso , Inibidor de Quinase Dependente de Ciclina p15/genética , População Branca/genética , Viés , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética
17.
Am J Hum Genet ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39332408

RESUMO

Whereas 16p11.2 BP4-5 copy-number variants (CNVs) represent one of the most pleiotropic etiologies of genomic syndromes in both clinical and population cohorts, the mechanisms leading to such pleiotropy remain understudied. Identifying 73 deletion and 89 duplication carrier individuals among unrelated White British UK Biobank participants, we performed a phenome-wide association study (PheWAS) between the region's copy number and 117 complex traits and diseases, mimicking four dosage models. Forty-six phenotypes (39%) were affected by 16p11.2 BP4-5 CNVs, with the deletion-only, mirror, U-shape, and duplication-only models being the best fit for 30, 10, 4, and 2 phenotypes, respectively, aligning with the stronger deleteriousness of the deletion. Upon individually adjusting CNV effects for either body mass index (BMI), height, or educational attainment (EA), we found that sixteen testable deletion-driven associations-primarily with cardiovascular and metabolic traits-were BMI dependent, with EA playing a more subtle role and no association depending on height. Bidirectional Mendelian randomization supported that 13 out of these 16 associations were secondary consequences of the CNV's impact on BMI. For the 23 traits that remained significantly associated upon individual adjustment for mediators, matched-control analyses found that 10 phenotypes, including musculoskeletal traits, liver enzymes, fluid intelligence, platelet count, and pneumonia and acute kidney injury risk, remained associated under strict Bonferroni correction, with 10 additional nominally significant associations. These results paint a complex picture of 16p11.2 BP4-5's pleiotropic pattern that involves direct effects on multiple physiological systems and indirect co-morbidities consequential to the CNV's impact on BMI and EA, acting through trait-specific dosage mechanisms.

18.
Am J Hum Genet ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39260370

RESUMO

To identify modifier loci underlying variation in body mass index (BMI) in persons with cystic fibrosis (pwCF), we performed a genome-wide association study (GWAS). Utilizing longitudinal height and weight data, along with demographic information and covariates from 4,393 pwCF, we calculated AvgBMIz representing the average of per-quarter BMI Z scores. The GWAS incorporated 9.8M single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) > 0.005 extracted from whole-genome sequencing (WGS) of each study subject. We observed genome-wide significant association with a variant in FTO (FaT mass and Obesity-associated gene; rs28567725; p value = 1.21e-08; MAF = 0.41, ß = 0.106; n = 4,393 individuals) and a variant within ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5; rs162500; p value = 2.11e-10; MAF = 0.005, ß = -0.768; n = 4,085 pancreatic-insufficient individuals). Notably, BMI-associated variants in ADAMTS5 occur on a haplotype that is much more common in African (AFR, MAF = 0.183) than European (EUR, MAF = 0.006) populations (1000 Genomes project). A polygenic risk score (PRS) calculated using 924 SNPs (excluding 17 in FTO) showed significant association with AvgBMIz (p value = 2.2e-16; r2 = 0.03). Association between variants in FTO and the PRS correlation reveals similarities in the genetic architecture of BMI in CF and the general population. Inclusion of Black individuals in whom the single-gene disorder CF is much less common but genomic diversity is greater facilitated detection of association with variants that are in LD with functional SNPs in ADAMTS5. Our results illustrate the importance of population diversity, particularly when attempting to identify variants that manifest only under certain physiologic conditions.

19.
Am J Hum Genet ; 111(3): 562-583, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38367620

RESUMO

Genetic variants are involved in the orchestration of alternative polyadenylation (APA) events, while the role of DNA methylation in regulating APA remains unclear. We generated a comprehensive atlas of APA quantitative trait methylation sites (apaQTMs) across 21 different types of cancer (1,612 to 60,219 acting in cis and 4,448 to 142,349 in trans). Potential causal apaQTMs in non-cancer samples were also identified. Mechanistically, we observed a strong enrichment of cis-apaQTMs near polyadenylation sites (PASs) and both cis- and trans-apaQTMs in proximity to transcription factor (TF) binding regions. Through the integration of ChIP-signals and RNA-seq data from cell lines, we have identified several regulators of APA events, acting either directly or indirectly, implicating novel functions of some important genes, such as TCF7L2, which is known for its involvement in type 2 diabetes and cancers. Furthermore, we have identified a vast number of QTMs that share the same putative causal CpG sites with five different cancer types, underscoring the roles of QTMs, including apaQTMs, in the process of tumorigenesis. DNA methylation is extensively involved in the regulation of APA events in human cancers. In an attempt to elucidate the potential underlying molecular mechanisms of APA by DNA methylation, our study paves the way for subsequent experimental validations into the intricate biological functions of DNA methylation in APA regulation and the pathogenesis of human cancers. To present a comprehensive catalog of apaQTM patterns, we introduce the Pancan-apaQTM database, available at https://pancan-apaqtm-zju.shinyapps.io/pancanaQTM/.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Poliadenilação/genética , Diabetes Mellitus Tipo 2/genética , Neoplasias/genética , Neoplasias/patologia , Regulação da Expressão Gênica , Metilação de DNA/genética , Regiões 3' não Traduzidas
20.
Annu Rev Genet ; 53: 347-372, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31505133

RESUMO

The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.


Assuntos
Genética Populacional/métodos , Padrões de Herança , Plantas/genética , Espermatozoides/fisiologia , Animais , Quimera , Mapeamento Cromossômico , Feminino , Células Germinativas/fisiologia , Heterozigoto , Depressão por Endogamia , Masculino , Meiose , Pólen/genética , Autoincompatibilidade em Angiospermas/genética , Razão de Masculinidade , Vertebrados/genética , Zigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA