Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 115(2): 317-334, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37009643

RESUMO

Frequent herbicide use selects for herbicide resistance in weeds. Cytochrome P450s are important detoxification enzymes responsible for herbicide resistance in plants. We identified and characterized a candidate P450 gene (BsCYP81Q32) from the problematic weed Beckmannia syzigachne to test whether it conferred metabolic resistance to the acetolactate synthase-inhibiting herbicides mesosulfuron-methyl, bispyribac-sodium, and pyriminobac-methyl. Transgenic rice overexpressing BsCYP81Q32 was resistant to the three herbicides. Equally, rice overexpressing the rice ortholog gene OsCYP81Q32 was more resistant to mesosulfuron-methyl. Conversely, an OsCYP81Q32 gene knockout generated using CRISPR/Cas9 enhanced mesosulfuron-methyl sensitivity in rice. Overexpression of the BsCYP81Q32 gene resulted in enhanced mesosulfuron-methyl metabolism in transgenic rice seedlings via O-demethylation. The major metabolite, demethylated mesosulfuron-methyl, was chemically synthesized and displayed reduced herbicidal effect in plants. Moreover, a transcription factor (BsTGAL6) was identified and shown to bind a key region in the BsCYP81Q32 promoter for gene activation. Inhibition of BsTGAL6 expression by salicylic acid treatment in B. syzigachne plants reduced BsCYP81Q32 expression and consequently changed the whole plant response to mesosulfuron-methyl. Sequence polymorphisms in an important region of the BsTGAL6 promoter may explain the higher expression of BsTGAL6 in resistant versus susceptible B. syzigachne plants. Collectively, the present study reveals the evolution of an herbicide-metabolizing and resistance-endowing P450 and its transcription regulation in an economically important weedy plant species.


Assuntos
Acetolactato Sintase , Herbicidas , Oryza , Acetolactato Sintase/genética , Poaceae/genética , Compostos de Sulfonilureia/farmacologia , Oryza/genética , Oryza/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Herbicidas/farmacologia , Resistência a Herbicidas/genética
2.
Pestic Biochem Physiol ; 198: 105711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225069

RESUMO

Severe infestations of American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) in wheat fields throughout Anhui Province, China, pose a significant threat to local agricultural production. This study aims to evaluate the susceptibility of 37 B. syzigachne populations collected from diverse wheat fields in Anhui Province to three commonly used herbicides: fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon. Single-dose testing revealed that out of the 37 populations, 31, 26, and 11 populations had either evolved or were evolving resistance to fenoxaprop-P-ethyl, mesosulfuron-ethyl, and isoproturon, respectively. Among them, 25 populations displayed concurrent resistance to both fenoxaprop-P-ethyl and mesosulfuron-ethyl, while eight exhibited resistance to all three tested herbicides. Whole-plant bioassays confirmed that approximately 84% of the fenoxaprop-P-ethyl-resistant populations manifested high-level resistance (resistance index (RI) ≥10); 62% of the mesosulfuron-ethyl-resistant populations and 82% of the isoproturon-resistant populations exhibited low- to moderate-level resistance (2 ≤ RI <10). Three distinct target-site mutations were identified in 27% of fenoxaprop-P-ethyl-resistant populations, with no known resistance mutations detected in the remaining herbicide-resistant populations. The inhibition of cytochrome P450s (P450s) and/or glutathione S-transferases (GSTs) substantially increased susceptibility in the majority of resistant populations lacking mutations at the herbicide target site. In conclusion, resistance to fenoxaprop-P-ethyl and mesosulfuron-ethyl was widespread in B. syzigachne within Anhui Province's wheat fields, while resistance to isoproturon was rapidly evolving due to its escalating usage. Target-site mutations were present in approximately one-third of fenoxaprop-P-ethyl-resistant populations, and alternative mechanisms involving P450s and/or GSTs could explain the resistance observed in most of the remaining populations.


Assuntos
Herbicidas , Oxazóis , Compostos de Fenilureia , Propionatos , Triticum , Triticum/genética , Poaceae , China , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Acetil-CoA Carboxilase/genética
3.
Cell Mol Life Sci ; 79(4): 205, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35334005

RESUMO

Multiple herbicide resistance in diverse weed species endowed by enhanced herbicide detoxification or degradation is rapidly growing into a great threat to herbicide sustainability and global food safety. Although metabolic resistance is frequently documented in the economically damaging arable weed species shortawn foxtail (Alopecurus aequalis Sobol.), relevant molecular knowledge has been lacking. Previously, we identified a field population of A. aequalis (R) that had evolved metabolic resistance to the commonly used acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron-methyl. RNA sequencing was used to discover potential herbicide metabolism-related genes, and four cytochrome P450s (CYP709C56, CYP71R18, CYP94C117, and CYP94E14) were identified with higher expressions in the R vs. susceptible (S) plants. Here the full-length P450 complementary DNA transcripts were each cloned with identical sequences between the S and R plants. Transgenic Arabidopsis overexpressing CYP709C56 became resistant to the sulfonylurea herbicide mesosulfuron-methyl and the triazolo-pyrimidine herbicide pyroxsulam. This resistance profile generally but does not completely in accordance with what is evident in the R A. aequalis. Transgenic lines exhibited enhanced capacity for detoxifying mesosulfuron-methyl into O-demethylated metabolite, which is in line with the detection of O-demethylated herbicide metabolite in vitro in transformed yeast. Structural modeling predicted that mesosulfuron-methyl binds to CYP709C56 involving amino acid residues Thr-328, Thr-500, Asn-129, Gln-392, Phe-238, and Phe-242 for achieving O-demethylation. Constitutive expression of CYP709C56 was highly correlated with the metabolic mesosulfuron-methyl resistance in A. aequalis. These results indicate that CYP709C56 degrades mesosulfuron-methyl and its up-regulated expression in A. aequalis confers resistance to mesosulfuron-methyl.


Assuntos
Resistência a Herbicidas , Compostos de Sulfonilureia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Herbicidas/genética , Poaceae/genética , Poaceae/metabolismo , Compostos de Sulfonilureia/farmacologia
4.
Ecotoxicol Environ Saf ; 229: 113072, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922171

RESUMO

Herbicide resistance to chemical herbicide is a global issue that presents an ongoing threat to grain production. Though it has been frequently implicated that the production of detoxification enzymes increased in resistance development, the mechanisms for overexpression of these genes employed by herbicide-resistant weeds remain complicated. In this study, a mesosulfuron-methyl resistant Beckmannia syzigachne population (R) was found to be cross-resistant to another herbicide pyriminobac-methyl. No known target-site mutations were detected in the R population. In contrast, the decreased uptake and enhanced metabolic rates of mesosulfuron-methyl were detected in the R than the susceptible (S) population. Two candidate ATP-binding cassette (ABC) transporter genes (ABCB25 and ABCC14) that were constitutively up-regulated in the R population were identified by RNA-sequencing and validated by RT-qPCR. Alteration of antioxidant enzyme activities and gene expressions implied that mesosulfuron-methyl-induced antioxidant defenses provoked reactive oxygen species (ROS) burst. ROS scavenger assay showed that ROS induces ABCB25 and ABCC14 expression. This study reported for the first time that ABC transporters mediated non-target-site resistance contributes to mesosulfuron-methyl resistance in a B. syzigachne population, and implicated that ROS burst might be involved in the overexpression of ABC transporter genes in weeds.


Assuntos
Resistência a Herbicidas , Herbicidas , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Poaceae , Espécies Reativas de Oxigênio , Compostos de Sulfonilureia
5.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293032

RESUMO

Beckmannia syzigachne is a noxious grassy weed that infests wheat fields in China. Previously, we identified that mesosulfuron-methyl resistance in a B. syzigachne population (R, SD04) was conferred by non-target resistance, such as cytochrome P450 mixed-function oxidases (P450s)-based metabolism. RNA sequencing and real-time PCR (qRT-PCR) were used to discover potential P450s-resistant-related genes. Five cytochrome P450s (CYP704A177, CYP96B84, CYP71D7, CYP93A1, and CYP99A44) were found to be highly expressed in R plants. In this study, CYP99A44 and CYP704A177 were cloned from B. syzigachne and transferred into Arabidopsis thaliana to test the sensitivity of Arabidopsis with and without P450s genes to mesosulfuron-methyl and other acetolactate synthase (ALS)-inhibiting herbicides. Transgenic Arabidopsis overexpressing CYP99A44 became resistant to the sulfonylurea herbicide mesosulfuron-methyl, but showed no resistance to pyroxsulam, imazethapyr, flucarbazone, and bispyribac-sodium. Notably, those overexpressing CYP704A177 showed resistance to pyroxsulam and bispyribac-sodium, but not to mesosulfuron-methyl, imazethapyr, and flucarbazone. These results indicated that B. syzigachne and transgenic Arabidopsis displayed different cross-resistance patterns to ALS-inhibiting herbicides. Subcellular localization revealed that CYP99A44 and CYP704A177 protein were located in the endoplasmic reticulum. Furthermore, these results clearly indicated that CYP99A44-mediated mesosulfuron-methyl resistance in B. syzigachne and CYP704A177 may be involved in B. syzigachne cross-resistance to pyroxsulam and bispyribac-sodium.


Assuntos
Acetolactato Sintase , Arabidopsis , Herbicidas , Acetolactato Sintase/genética , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Arabidopsis/genética , Poaceae/genética , Sistema Enzimático do Citocromo P-450/genética
6.
Pestic Biochem Physiol ; 171: 104738, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357560

RESUMO

American sloughgrass (Beckmannia syzigachne Steud.) has become a dominant weed in fields with rice-wheat rotation. Moreover, herbicide resistance has rendered weed control difficult. We identified a biotype showing resistance to ALS inhibitor mesosulfuron-methyl with a resistant index 3.3, but without any ALS mutation. This study aims to identify and confirm the factors associated with non-target site resistance of this biotype to mesosulfuron-methyl using RNA-Seq. 118,111 unigenes were assembled, and 50.9% of these were annotated across seven databases. Eleven contigs related to metabolic resistance were identified based on differential expression via RNA-Seq which include a novel resistance-related transcription factor (MYC3) and two disease resistance proteins were also identified (At1g58602 and At1g15890). Fold changes in expression of these genes in comparison M-R vs. M-S ranged from 3.9 to 11.6, as confirmed by qPCR. The expression of a contig annotated as cytochrome P450 (CYP86B1) in resistant individuals was over 3 times higher than that in sensitive individuals at 0-72 h after mesosulfuron-methyl treatment. A similar trend was noted for three other genes annotated as glutathione S-transferase (GST), namely GST-T3, GST-U6, and GST-U14; the expression of GST-U6 in resistant individuals was up to 142.3 times higher than that in sensitive individuals at 24 h after mesosulfuron-methyl treatment. In addition, GST activity in resistant individuals was 2.1 to 5.3 times higher than that in sensitive individuals. The GR50 of resistant biotype decreased from 24.4 to 11.3 g a.i. ha-1 after P450 inhibitor malathion treatment. This study identified a cytochrome P450 gene CYP86B1 and three GST genes GST-T3, GST-U6, and GST-U14 that have higher expression in mesosulfuron-methyl resistant B. syzigachne, suggesting that both P450- and GST-based activities could be involved in resistance.


Assuntos
Herbicidas , RNA-Seq , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Compostos de Sulfonilureia
7.
Pestic Biochem Physiol ; 155: 126-131, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30857622

RESUMO

Tausch's goatgrass (Aegilops tauschii Coss.) is one of the most troublesome weeds in winter wheat-growing regions of China. In recent years, the recommended field rate of mesosulfuron-methyl failed to control the Tausch's goatgrass population in Shanxi province (SX), China. Experiments were conducted to characterize the herbicide resistance level and investigate the basis of mesosulfuron-methyl resistance in Tausch's goatgrass. Whole-plant dose-response tests showed that the SX population exhibited 11.42-fold resistance to mesosulfuron-methyl than the susceptible HN population, and the resistance level in the SX population could be significantly reduced by malathion, a cytochrome P450 inhibitor. The SX population also exhibited cross-resistance to imazethapyr, pyroxsulam and bispyribac­sodium. Acetohydroxyacid synthase (AHAS) sequencing and enzyme activity assays demonstrated that the mesosulfuron-methyl resistance was not conferred by target-site substitution. A sensitive AHAS, together with the malathion revisable resistance, suggested that herbicide metabolism likely plays a main role in the mechanism of mesosulfuron-methyl resistance in the SX population. To our knowledge, this is the first report elucidating the mesosulfuron-methyl resistance in Tausch's goatgrass.


Assuntos
Aegilops/efeitos dos fármacos , Herbicidas/farmacologia , Compostos de Sulfonilureia/farmacologia , Acetolactato Sintase/metabolismo , Aegilops/metabolismo , Benzoatos/farmacologia , Ácidos Nicotínicos/farmacologia , Pirimidinas/farmacologia
8.
Pestic Biochem Physiol ; 122: 76-80, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26071810

RESUMO

Alopecurus aequalis, a predominant weed species in wheat and oilseed rape fields, can no longer be controlled by mesosulfuron-methyl application after continuous use over several years. Based on dose-response studies, the putative resistant populations, JTJY-1 and JHHZ-1, were found to be resistant to mesosulfuron-methyl, with resistance index values of 5.5 and 14, respectively. Sensitivity assays of the mesosulfuron-methyl-resistant populations to other herbicides revealed that the JTJY-1 population had moderate or high cross resistance to sulfonylureas (SUs) and triazolopyrimidines (TPs), but displayed a low level resistance to imidazolinones (IMIs). JTJY-1 also had high multi-resistance to ACCase inhibitors, but remained susceptible to photosystem II inhibitors. The JHHZ-1 population was resistant to all ALS inhibitors tested, but was sensitive to ACCase inhibitors and photosystem II inhibitors. To clarify the molecular basis of resistance in JTJY-1 and JHHZ-1 population, the ALS and ACCase gene were sequenced. Two ALS mutations (Pro-197-Thr or Trp-574-Leu) were detected in the mesosulfuron-methyl-resistant plants. The ACCase gene analysis revealed that the resistant JTJY-1 population had an Ile-1781-Leu mutation. Furthermore, the presence of two different target site resistance (TSR) mechanisms (ALS and ACCase mutations) existing simultaneously in individual A. aequalis was firstly documented in the presented study.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Poaceae/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Acetolactato Sintase/genética , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/genética , Sequência de Aminoácidos , Sequência de Bases , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos , Dados de Sequência Molecular , Mutação , Poaceae/genética , Poaceae/metabolismo
9.
Plant Physiol Biochem ; 215: 109083, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39216161

RESUMO

Understanding the mechanisms by which weeds develop herbicide resistance is crucial for managing resistance effectively and optimizing herbicide use. Beckmannia syzigachne, a harmful grass weed prevalent in wheat and rice-wheat rotation areas, poses a significant threat to crop productivity. A field herbicide resistance survey identified a resistant population with a new ALS mutation (Asp-376-Glu). The Glu-376-Asp population displayed varying resistance levels to seven ALS herbicides, verified using the dCAPS method. qRT-PCR analysis showed that no significant difference existed in the ALS gene expression between the Asp-376-Glu and S populations. P450 and GST inhibitors failed to reverse resistance to mesosulfuron-methyl, suggesting no involvement of P450- and GST-based metabolic resistance. Molecular docking indicated that the Asp-376-Glu mutation reduces the binding affinity between ALS-inhibitors and BsALS. The findings provide valuable insights into herbicide resistance mechanisms for weed resistance control.


Assuntos
Acetolactato Sintase , Resistência a Herbicidas , Herbicidas , Mutação , Compostos de Sulfonilureia , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Compostos de Sulfonilureia/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/efeitos dos fármacos , Simulação de Acoplamento Molecular , Plantas Daninhas/genética , Plantas Daninhas/efeitos dos fármacos
10.
Plants (Basel) ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999592

RESUMO

The evolved resistance of Bromus japonicus Houtt. to ALS-inhibiting herbicides is well established. Previous studies have primarily focused on target-site resistance; however, non-target-site resistance has not been well characterized. This investigation demonstrated that ALS gene sequencing did not detect any previously known resistance mutations in a mesosulfuron-methyl-resistant (MR) population, and notably, treatment with the P450 monooxygenase (P450) inhibitor malathion markedly heightened susceptibility to mesosulfuron-methyl. Utilizing UPLC-MS/MS analysis confirmed elevated mesosulfuron-methyl metabolism in MR plants. The integration of Isoform Sequencing (Iso-Seq) and RNA Sequencing (RNA-Seq) facilitated the identification of candidate genes associated with non-target sites in a subpopulation with two generations of herbicide selection. Through qRT-PCR analysis, 21 differentially expressed genes were characterized, and among these, 10 genes (comprising three P450s, two glutathione S-transferases, one glycosyltransferase, two ATP-binding cassette transporters, one oxidase, and one hydrolase) exhibited constitutive upregulation in resistant plants. Our findings substantiated that increased herbicide metabolism is a driving force behind mesosulfuron-methyl resistance in this B. japonicus population.

11.
Plant Physiol Biochem ; 210: 108597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598868

RESUMO

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.


Assuntos
Acetolactato Sintase , Resistência a Herbicidas , Herbicidas , Poaceae , Compostos de Sulfonilureia , Resistência a Herbicidas/genética , Compostos de Sulfonilureia/farmacologia , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Herbicidas/farmacologia , Poaceae/genética , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Imidazóis/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação , Simulação de Acoplamento Molecular , Benzoatos , Pirimidinas
12.
Front Plant Sci ; 15: 1348815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455726

RESUMO

Introduction: Bromus japonicus is one of the most notorious agricultural weeds in China. The long-term use of ALS-inhibiting herbicides has led to rapid evolution of herbicide resistance in B. japonicus. B. japonicus population (BJ-R) surviving mesosulfuron-methyl treatment was collected from wheatland. Here, we aimed to confirm the resistance mechanisms in this putative resistant population. Methods: The dose-reponse tests were used to test the resistance level of the B. japonicus to ALS-inhibiting herbicides. Pretreatment with P450 and GST inhibitors and GST activity assays were used to determine whether P450 or GST was involved in the resistance of the BJ-R population. Sanger sequencing was used to analyse the ALS mutation of the BJ-R population. RT-qPCR was used to confirm the the expression levels of the ALS gene in mesosulfuron-methyl -resistant (BJ-R) and-susceptible (BJ-S) B. japonicus. An in vitro ALS activity assay was used to determine the ALS activity of the BJ-R and BJ-S populations. Homology modelling and docking were used to determine the binding energy of the BJ-R and BJ-S populations with ALS-inhibiting herbicides. Results: B. japonicus population (BJ-R) was confirmed to be 454- and 2.7-fold resistant to the SU herbicides mesosulfuron-methyl and nicosulfuron, and 7.3-, 2.3-, 1.1- and 10.8-fold resistant to the IMI herbicide imazamox, the TP herbicide penoxsulam, the PTB herbicide pyribenzoxim and the SCT herbicide flucarbazone-sodium, respectively, compared with its susceptible counterpart (BJ-S). Neither a P450 inhibitor nor a GST inhibitor could reverse the level of resistance to mesosulfuron-methyl in BJ-R. In addition, no significant differences in GST activity were found between the BJ-R and BJ-S. ALS gene sequencing revealed a Pro-197-Thr mutation in BJ-R, and the gene expression had no significant differences between the BJ-R and BJ-S. The ALS activity of BJ-R was 106-fold more tolerant to mesosulfuron-methyl than that of BJ-S. Molecular docking showed that the binding energy of the ALS active site and mesosulfuron-methyl was changed from -6.67 to -4.57 kcal mol-1 due to the mutation at position 197. Discussion: These results suggested that the Pro-197-Thr mutation was the main reason for the high resistance level of BJ-R to mesosulfuron-methyl. Unlike previous reports of the cross-resistance pattern conferred by this mutation, we firstly documented that the Pro-197-Thr mutation confers broad cross-resistance spectrums to ALS-inhibiting herbicides in B. japonicus.

13.
J Agric Food Chem ; 71(1): 186-196, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534090

RESUMO

The acetolactate synthase (ALS) inhibitor mesosulfuron-methyl is currently the only selective herbicide to control Aegilops tauschii in wheat fields; however, the mechanism underlying this selectivity remains unclear. Results showed that the tolerance of Triticum aestivum to mesosulfuron-methyl was much higher than that of A. tauschii. Mesosulfuron-methyl inhibited the in vitro ALS activity of A. tauschii and T. aestivum similarly, but the predicted structural interactions of ALS with mesosulfuron-methyl and induced expression of als were different in the two species. Compared with T. aestivum, A. tauschii was found to absorb more mesosulfuron-methyl and metabolize much less mesosulfuron-methyl. The cytochrome P450 monooxygenase (CYP450) inhibitor, malathion, greatly increased the sensitivity of T. aestivum to mesosulfuron-methyl, while its synergistic effect was smaller in A. tauschii. Finally, 19 P450 genes were selected as candidate genes related with metabolism-based mesosulfuron-methyl selectivity. Collectively, different sensitivities to mesosulfuron-methyl in the two species were likely to be attributed to metabolism variances.


Assuntos
Aegilops , Triticum , Triticum/genética , Compostos de Sulfonilureia/farmacologia , Sistema Enzimático do Citocromo P-450/genética
14.
J Hazard Mater ; 443(Pt B): 130293, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444049

RESUMO

Mesosulfuron-methyl is a widely used herbicide in wheat fields. We previously reported that mesosulfuron-methyl alters the bacterial/fungal community structure in experimental indoor microcosms, ultimately affecting NO3--N and NH4+-N contents in soil nitrogen (N) cycling. However, how mesosulfuron-methyl application alter soil N cycling by changing microbial community assembly is unknown. Here, we designed an outdoor experiment comprising 2-month periods to investigate changes in soil N-cycle functional genes and structural shifts in the microbial community assembly in response to mesosulfuron-methyl applied at 11.25 and 112.5 g a.i. hm-2. Results showed that high mesosulfuron-methyl input significantly decreased AOA amoA and nirK abundances within the initial 15 days, but increased AOB amoA on day 60. The nifH abundance displayed a stimulation-inhibition trend. Moreover, high mesosulfuron-methyl input decreased the network's complexity, and newly formed multiple network modules exhibited strong negative associations with nifH, AOB amoA, nirK and nirS. Further structural equation model demonstrated that mesosulfuron-methyl did reveal strong direct inhibition of nirK, and it indirectly affected nirK by changing nifH abundance and Planomicrobium. Thus mesosulfuron-methyl perturbs N-cycling processes by reshaping bacterial community assembly. Taken together, our study provides theoretical support for determining the microbiological mechanism by which mesosulfuron-methyl affects soil N cycling.


Assuntos
Herbicidas , Microbiota , Herbicidas/farmacologia , Solo , Nitrogênio
15.
Front Cell Infect Microbiol ; 12: 1094853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619755

RESUMO

Introduction: Alopecurus aequalis is a grass species invading Chinese canola and wheat fields. An A. aequalis KMN-R population surviving mesosulfuron-methyl treatment with recommended rates was acquired from wheatland. Here, we aimed to confirm the resistance profiles of KMN-R to acetolactate synthetase (ALS) inhibiting herbicides and explore the possible resistance mechanisms to mesosulfuron-methyl in this weed population. Methods: The dose-response tests performed in our study were used to test the toxicity of A. aequalis to ALS-inhibiting herbicides. Sanger sequencing was used to analyze the ALS gene of mesosulfuron-methyl -resistant and -susceptible A. aequalis. RNA sequencing analysis was used to find candidate genes that may confer metabolic resistance to the mesosulfuron-methyl in resistant A. aequalis population. Mesosulfuron-methyl -resistant and -susceptible A. aequalis populations fungal composition was measured via Illumina MiSeq Sequencing. Results: Dose-response results indicated that KMN-R population evolved resistance to mesosulfuron-methyl and other tested ALS-inhibiting herbicides. Known resistance-conferring Trp-574-Leu gene mutation in A. aequalis ALS was detected in the KMN-R population. Pretreatment with 4-chloro-7-nitrobenzoxadiazole reversed mesosulfuron-methyl resistance in KMN-R. Glutathione S-transferases (GST) gene GSTZ2 and GSTT3 were highly expressed in KMN-R population. In addition, we evaluated the alpha diversity in A. aequalis, centering on OTU abundance, equality, and multiplicity, and found that the fungal community composition had more unexplained variance between KMN-R and KMN-S A. aequalis. We also observed higher abundances of specific fungi in KMN-R A. aequalis. Discussion: The results proved that resistance to mesosulfuron-methyl in A. aequalis KMN-R population is probably caused by target site- and non-target site-based relating GST and provided the basis for further research between fungal interaction and herbicide resistance.


Assuntos
Acetolactato Sintase , Herbicidas , Micobioma , Herbicidas/farmacologia , Acetil-CoA Carboxilase/genética , Poaceae , Acetolactato Sintase/genética
16.
Front Plant Sci ; 13: 868807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401603

RESUMO

Enhanced herbicide metabolism mediated by cytochrome P450s has been proposed as one of the major mechanisms of resistance to fenoxaprop-P-ethyl in a metabolic-herbicide-resistant biotype of Asia minor bluegrass (Polypogon fugax Nees ex Steud.). Upon pre-treatment with the P450 inhibitor piperonyl butoxide, a remarkable reduction in metabolic rates of the phytotoxic fenoxaprop-P has been observed in the resistant plants, implying that constitutive and/or fenoxaprop-P-ethyl-induced up-regulation of specific P450 isoforms are involved in the fenoxaprop-P-ethyl resistance. However, which P450 gene(s) were responsible for the metabolic resistance is still unknown. In this present study, based on the abundant gene resources of P. fugax established previously, a total of 48 putative P450 genes were isolated from the metabolic-herbicide-resistant plants and used for gene expression analysis. The most suitable reference genes for accurate normalization of real-time quantitative PCR data were first identified in P. fugax and recognized as actin (ACT), 18S rRNA (18S), and ribulose-1,5-bisphosphate carboxylase oxygenase (RUBP) under fenoxaprop-P-ethyl stress, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and elongation factor 1α (EF1α) under mesosulfuron-methyl stress, and ACT, EF1α, eukaryotic initiation factor 4a (EIF4A), and 25S rRNA (25S) at different growth stages. Expression analysis of the putative P450 genes revealed that six genes, respectively, annotated as CYP709B1, CYP71A1-4, CYP711A1, CYP78A9, P450-11, and P450-39 were up-regulated more than 10-fold in the resistant plants by fenoxaprop-P-ethyl treatment, and all of them exhibited constitutively and/or herbicide-induced higher transcript levels in the fenoxaprop-P-ethyl-resistant than in the susceptible plants. Three genes, respectively, annotated as CYPRO4, CYP313A4, and CYP51H11 constantly up-regulated in the resistant than in the susceptible plants after fenoxaprop-P-ethyl treatment. Up-regulated expressions of these specific P450 genes were consistent with the higher P450 contents determined in the resistant plants. These results will help to elucidate the mechanisms for P450-mediated metabolic-herbicide resistance in P. fugax as well as other grass weed species.

17.
J Agric Food Chem ; 70(36): 11429-11440, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36048004

RESUMO

Aegilops tauschii Coss. is a malignant weed in wheat fields in China, its herbicide resistance has been threatening crop production. This study identified one mesosulfuron-methyl-resistant(R) population, JJMHN2018-05 (R), without target resistance mutations. To fully understand the resistance mechanism, non-target site resistance was investigated by using transcriptome sequencing combined with a reference genome. Results showed that the cytochrome P450 monooxygenase (P450) inhibitor malathion significantly increased the mesosulfuron-methyl sensitivity in R plants, and greater herbicide-induced glutathione S-transferase (GST) activity was also confirmed. Liquid chromatography with tandem mass spectrometry analysis further supported the enhanced mesosulfuron-methyl metabolism in R plants. Gene expression data analysis and qRT-PCR validation indicated that eight P450s, six GSTs, two glycosyltransferases (GTs), four peroxidases, and one aldo-keto reductase (AKRs) stably upregulated in R plants. This research demonstrates that the P450s and GSTs involved in enhanced mesosulfuron-methyl metabolism contribute to mesosulfuron-methyl resistance in A. tauschii and identifies potential contributors from metabolic enzyme families.


Assuntos
Aegilops , Herbicidas , Aegilops/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Compostos de Sulfonilureia/farmacologia , Transcriptoma
18.
J Environ Health Sci Eng ; 19(2): 1435-1445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900278

RESUMO

PURPOSE: Pollution of surface water and groundwater by bulky molecules such as pesticides has been recognized as a major problem in many countries due to their persistence in aquatic environment and potential adverse health effects. The main purpose of this study is the development of a capable adsorbent to remove these bulky molecules from wastewater such as the pesticide Mesosulfuron-Methyl (MM) by reducing the diffusion path, to overcome the problems of diffusional limitations on microporous adsorbents. METHODS: The adsorption of mesosulfuron-methyl (MM) from aqueous solution is curried out using treated acid HY zeolite. Batch sorption equilibrium and kinetic experiments are conducted to evaluate the efficiency of these materials. Parent zeolites and their derivatives have been characterized by nitrogen adsorption-desorption, pyridine chemisorption followed by infrared spectroscopy and X-ray fluorescence. RESULTS: The acid treatment leads to an increase in the specific surface from 691 to 853 m2 g- 1 for HY(30) and from 631 to 806 m2 g- 1 for the HY(16.6) zeolites. It also leads to a reduction in Lewis acidity from 74 to 25 µmol g- 1 and from 135 to 31 µmol g- 1 for HY(30) and HY(16.6) zeolites respectively, and increases the adsorbent-adsorbate interaction. The adsorption capacity increased from 83 to 99 % after acid treatment. The equilibrium adsorption time is decreased from 15 h to 10 min for the HY(30)_A and from 20 h to 20 min for the HY(16.6)_A for an initial concentration of 20 mg L- 1. The adsorption capacity depends on the pH solution, and the neutral form of the MM is more easily adsorbed into zeolite than the dissociated form via the framework bridged oxygen atoms. For all the samples, the pseudo-second-order kinetic model fits very well with the experimental data. In the case of the modified zeolites, the approaching equilibrium factor R w decreases from 0.08183 to 0.00008 when the Lewis acid sites decrease; indicating that the equilibrium is reached more quickly. S-shape adsorption isotherms indicates that cooperative adsorption phenomena. Nevertheless, the shape of acid treated zeolites evolves to an L type indicating a significant enhancement of the adsorbent - adsorbate interactions inducing better adsorption efficiency. CONCLUSIONS: Mesosulfuron-methyl adsorption has been successfully enhanced after acid treatments of zeolites HY.

19.
J Hazard Mater ; 416: 125770, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838509

RESUMO

The wide application of mesosulfuron-methyl (MS) in soil may affect soil microbial community, yet the information is limited. In this work, two distinct soil types from Anyang (AY) and Nanjing (NJ) were spiked with MS (0, 0.006, 0.06, or 0.6 mg kg-1) and incubated for 90 days. MS decreased bacterial and fungal (except the last sampling) abundance and altered their diversity and community. Five biomarkers of bacterial species may help MS degradation and more increased xenobiotics biodegradation pathways were also observed in 0.6 mg kg-1 treatment in AY soil. A co-occurrence network revealed the biomarkers grouped in one module in all AY soils, suggesting these biomarkers act in concert to degrade MS. MS impacted soil N transformation with increasing N2-fixing bacteria in both soils and ammonia-oxidising bacteria (AOB) in NJ and decreasing ammonia-oxidizing archaea (AOA) in AY. The contents of NO3--N and NH4+-N were increased by MS. Structural equation models revealed that the abundance of bacteria and fungi was responsible for the NO3--N and NH4+-N contents. In conclusion, this work aids safety assessments and degradation-related research of MS in soil.


Assuntos
Microbiologia do Solo , Solo , Amônia , Archaea , Nitrificação , Oxirredução , Compostos de Sulfonilureia
20.
Environ Pollut ; 262: 114166, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32443208

RESUMO

The soybean processing wastewater (SPW) supplementation to facilitate the simultaneously treatment (SPW and mesosulfuron-methyl) of wastewater and production of biological substances by Rhodopseudomonas sphaeroides (R. sphaeroides) was discussed. Compared with the control group, with the addition of SPW, mesosulfuron-methyl was removed, and the yields of single-cell proteins, carotenoids, and bacteriochlorophyll were increased. In the 3 mg/L dose group, the mesosulfuron-methyl removal rate reached 97% after 5 days. Molecular analysis revealed that mesosulfuron-methyl exhibited induction effects on expression of the cpm gene and regulation effects on the synthesis of cytochrome P450 monooxygenases (P450) by activating HKs gene in TCS signal transduction pathway. For R. sphaeroides, this induction process required 1 day. The synthesis of P450 occurred 1 day after inoculation. Prior to expressing cpm gene and synthesizing P450, R. sphaeroides need a period of time to adapt to external mesosulfuron-methyl stimulation. However, the R. sphaeroides growth could not be maintained for more than 1 day due to the lack of organic matter in the raw wastewater. The SPW supplementation provided a sufficient carbon source in four groups with added SPW. After 5 days, R. sphaeroides became the dominant microflora in the wastewater. This new method could complete the treatment of mixed wastewater, the increased of biological substances output and the reuse of wastewater and R. sphaeroides cells as resources at the same time.


Assuntos
Rhodobacter sphaeroides , Águas Residuárias , Glycine max , Compostos de Sulfonilureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA