RESUMO
The linear ubiquitin chain assembly complex, LUBAC, is the only known mammalian ubiquitin ligase that makes methionine 1 (Met1)-linked polyubiquitin (also referred to as linear ubiquitin). A decade after LUBAC was discovered as a cellular activity of unknown function, there are now many lines of evidence connecting Met1-linked polyubiquitin to NF-κB signaling, cell death, inflammation, immunity, and cancer. We now know that Met1-linked polyubiquitin has potent signaling functions and that its deregulation is connected to disease. Indeed, mutations and deficiencies in several factors involved in conjugation and deconjugation of Met1-linked polyubiquitin have been implicated in immune-related disorders. Here, we discuss current knowledge and recent insights into the role and regulation of Met1-linked polyubiquitin, with an emphasis on the mechanisms controlling the function of LUBAC.
Assuntos
Imunidade , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Poliubiquitina/metabolismo , Transdução de Sinais , Animais , Morte Celular , Humanos , NF-kappa B/genética , NF-kappa B/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Poliubiquitina/genética , Poliubiquitina/imunologiaRESUMO
N-terminal methionine-linked ubiquitin (Met1-Ub), or linear ubiquitin, has emerged as a central post-translational modification in innate immune signalling. The molecular machinery that assembles, senses and, more recently, disassembles Met1-Ub has been identified, and technical advances have enabled the identification of physiological substrates for Met1-Ub in response to activation of innate immune receptors. These discoveries have significantly advanced our understanding of how nondegradative ubiquitin modifications control proinflammatory responses mediated by nuclear factor-κB and mitogen-activated protein kinases. In this review, we discuss the current data on Met1-Ub function and regulation, and point to some of the questions that still remain unanswered.