Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37889119

RESUMO

Microbial genome recovery from metagenomes can further explain microbial ecosystem structures, functions and dynamics. Thus, this study developed the Additional Clustering Refiner (ACR) to enhance high-purity prokaryotic and eukaryotic metagenome-assembled genome (MAGs) recovery. ACR refines low-quality MAGs by subjecting them to iterative k-means clustering predicated on contig abundance and increasing bin purity through validated universal marker genes. Synthetic and real-world metagenomic datasets, including short- and long-read sequences, evaluated ACR's effectiveness. The results demonstrated improved MAG purity and a significant increase in high- and medium-quality MAG recovery rates. In addition, ACR seamlessly integrates with various binning algorithms, augmenting their strengths without modifying core features. Furthermore, its multiple sequencing technology compatibilities expand its applicability. By efficiently recovering high-quality prokaryotic and eukaryotic genomes, ACR is a promising tool for deepening our understanding of microbial communities through genome-centric metagenomics.


Assuntos
Metagenoma , Microbiota , Eucariotos/genética , Microbiota/genética , Algoritmos , Metagenômica/métodos , Análise por Conglomerados
2.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37114640

RESUMO

Recovering high-quality metagenome-assembled genomes (HQ-MAGs) is critical for exploring microbial compositions and microbe-phenotype associations. However, multiple sequencing platforms and computational tools for this purpose may confuse researchers and thus call for extensive evaluation. Here, we systematically evaluated a total of 40 combinations of popular computational tools and sequencing platforms (i.e. strategies), involving eight assemblers, eight metagenomic binners and four sequencing technologies, including short-, long-read and metaHiC sequencing. We identified the best tools for the individual tasks (e.g. the assembly and binning) and combinations (e.g. generating more HQ-MAGs) depending on the availability of the sequencing data. We found that the combination of the hybrid assemblies and metaHiC-based binning performed best, followed by the hybrid and long-read assemblies. More importantly, both long-read and metaHiC sequencings link more mobile elements and antibiotic resistance genes to bacterial hosts and improve the quality of public human gut reference genomes with 32% (34/105) HQ-MAGs that were either of better quality than those in the Unified Human Gastrointestinal Genome catalog version 2 or novel.


Assuntos
Metagenoma , Metagenômica , Humanos , Análise de Sequência de DNA , Bactérias/genética , Trato Gastrointestinal
3.
J Mol Evol ; 92(2): 121-137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489069

RESUMO

Cyanobacteria are recognised for their pivotal roles in aquatic ecosystems, serving as primary producers and major agents in diazotrophic processes. Currently, the primary focus of cyanobacterial research lies in gaining a more detailed understanding of these well-established ecosystem functions. However, their involvement and impact on other crucial biogeochemical cycles remain understudied. This knowledge gap is partially attributed to the challenges associated with culturing cyanobacteria in controlled laboratory conditions and the limited understanding of their specific growth requirements. This can be circumvented partially by the culture-independent methods which can shed light on the genomic potential of cyanobacterial species and answer more profound questions about the evolution of other key biogeochemical functions. In this study, we assembled 83 cyanobacterial genomes from metagenomic data generated from environmental DNA extracted from a brackish water lagoon (Chilika Lake, India). We taxonomically classified these metagenome-assembled genomes (MAGs) and found that about 92.77% of them are novel genomes at the species level. We then annotated these cyanobacterial MAGs for all the encoded functions using KEGG Orthology. Interestingly, we found two previously unreported functions in Cyanobacteria, namely, DNRA (Dissimilatory Nitrate Reduction to Ammonium) and DMSP (Dimethylsulfoniopropionate) synthesis in multiple MAGs using nirBD and dsyB genes as markers. We validated their presence in several publicly available cyanobacterial isolate genomes. Further, we identified incongruities between the evolutionary patterns of species and the marker genes and elucidated the underlying reasons for these discrepancies. This study expands our overall comprehension of the contribution of cyanobacteria to the biogeochemical cycling in coastal brackish ecosystems.


Assuntos
Compostos de Amônio , Cianobactérias , Ecossistema , Cianobactérias/genética , Metagenoma , Nitratos
4.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36124775

RESUMO

Pan-genome analyses of metagenome-assembled genomes (MAGs) may suffer from the known issues with MAGs: fragmentation, incompleteness and contamination. Here, we conducted a critical assessment of pan-genomics of MAGs, by comparing pan-genome analysis results of complete bacterial genomes and simulated MAGs. We found that incompleteness led to significant core gene (CG) loss. The CG loss remained when using different pan-genome analysis tools (Roary, BPGA, Anvi'o) and when using a mixture of MAGs and complete genomes. Contamination had little effect on core genome size (except for Roary due to in its gene clustering issue) but had major influence on accessory genomes. Importantly, the CG loss was partially alleviated by lowering the CG threshold and using gene prediction algorithms that consider fragmented genes, but to a less degree when incompleteness was higher than 5%. The CG loss also led to incorrect pan-genome functional predictions and inaccurate phylogenetic trees. Our main findings were supported by a study of real MAG-isolate genome data. We conclude that lowering CG threshold and predicting genes in metagenome mode (as Anvi'o does with Prodigal) are necessary in pan-genome analysis of MAGs. Development of new pan-genome analysis tools specifically for MAGs are needed in future studies.


Assuntos
Genoma Bacteriano , Metagenoma , Filogenia , Genômica , Análise de Sequência de DNA/métodos , Metagenômica/métodos
5.
Appl Environ Microbiol ; 90(2): e0165523, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38231565

RESUMO

Ten Gouda cheese wheels with an age of 31 weeks from six different batch productions were affected by a crack defect and displayed an unpleasant off-flavor. To unravel the causes of these defects, the concentrations of free amino acids, other organic acids, volatile organic compounds, and biogenic amines were quantified in zones around the cracks and in zones without cracks, and compared with those of similar Gouda cheeses without crack defect. The Gouda cheeses with cracks had a significantly different metabolome. The production of the non-proteinogenic amino acid γ-aminobutyric acid (GABA) could be unraveled as the key mechanism leading to crack formation, although the production of the biogenic amines cadaverine and putrescine contributed as well. High-throughput amplicon sequencing of the full-length 16S rRNA gene based on whole-community DNA revealed the presence of Loigolactobacillus rennini and Tetragenococcus halophilus as most abundant non-starter lactic acid bacteria in the zones with cracks. Shotgun metagenomic sequencing allowed to obtain a metagenome-assembled genome of both Loil. rennini and T. halophilus. However, only Loil. rennini contained genes necessary for the production of GABA, cadaverine, and putrescine. Metagenetics further revealed the brine and the rennet used during cheese manufacturing as the most plausible inoculation sources of both Loil. rennini and T. halophilus.IMPORTANCECrack defects in Gouda cheeses are still poorly understood, although they can lead to major economic losses in cheese companies. In this study, the bacterial cause of a crack defect in Gouda cheeses was identified, and the pathways involved in the crack formation were unraveled. Moreover, possible contamination sources were identified. The brine bath might be a major source of bacteria with the potential to deteriorate cheese quality, which suggests that cheese producers should regularly investigate the quality and microbial composition of their brines. This study illustrated how a multiphasic approach can understand and mitigate problems in a cheese company.


Assuntos
Carboxiliases , Queijo , Lactobacillales , Lactobacillus , Sais , Lactobacillales/genética , Queijo/microbiologia , RNA Ribossômico 16S/genética , Cadaverina , Putrescina , Bactérias/genética , Ácido gama-Aminobutírico , Ácido Láctico , Microbiologia de Alimentos
6.
BMC Microbiol ; 24(1): 296, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123130

RESUMO

BACKGROUND: Subsurface microorganisms contribute to important ecosystem services, yet little is known about how the composition of these communities is affected by small scale heterogeneity such as in preferential flow paths including biopores and fractures. This study aimed to provide a more complete characterization of microbial communities from preferential flow paths and matrix sediments of a clayey till to a depth of 400 cm by using 16S rRNA gene and fungal ITS2 amplicon sequencing of environmental DNA. Moreover, shotgun metagenomics was applied to samples from fractures located 150 cm below ground surface (bgs) to investigate the bacterial genomic adaptations resulting from fluctuating exposure to nutrients, oxygen and water. RESULTS: The microbial communities changed significantly with depth. In addition, the bacterial/archaeal communities in preferential flow paths were significantly different from those in the adjacent matrix sediments, which was not the case for fungal communities. Preferential flow paths contained higher abundances of 16S rRNA and ITS gene copies than the corresponding matrix sediments and more aerobic bacterial taxa than adjacent matrix sediments at 75 and 150 cm bgs. These findings were linked to higher organic carbon and the connectivity of the flow paths to the topsoil as demonstrated by previous dye tracer experiments. Moreover, bacteria, which were differentially more abundant in the fractures than in the matrix sediment at 150 cm bgs, had higher abundances of carbohydrate active enzymes, and a greater potential for mixotrophic growth. CONCLUSIONS: Our results demonstrate that the preferential flow paths in the subsurface are unique niches that are closely connected to water flow and the fluctuating ground water table. Although no difference in fungal communities were observed between these two niches, hydraulically active flow paths contained a significantly higher abundance in fungal, archaeal and bacterial taxa. Metagenomic analysis suggests that bacteria in tectonic fractures have the genetic potential to respond to fluctuating oxygen levels and can degrade organic carbon, which should result in their increased participation in subsurface carbon cycling. This increased microbial abundance and activity needs to be considered in future research and modelling efforts of the soil subsurface.


Assuntos
Archaea , Bactérias , Fungos , Sedimentos Geológicos , Metagenômica , RNA Ribossômico 16S , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota/genética , Filogenia , DNA Bacteriano/genética , Argila , Análise de Sequência de DNA , Ecossistema , Solo/química
7.
Environ Sci Technol ; 58(15): 6659-6669, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557040

RESUMO

Revealing the role of functional redundancy is of great importance considering its key role in maintaining the stability of microbial ecosystems in response to various disturbances. However, experimental evidence on this point is still lacking due to the difficulty in "manipulating" and depicting the degree of redundancy. In this study, manipulative experiments of functional redundancy were conducted by adopting the mixed inoculation strategy to evaluate its role in engineered anaerobic digestion systems under ammonium inhibition conditions. The results indicated that the functional redundancy gradient was successfully constructed and confirmed by evidence from pathway levels. All mixed inoculation groups exhibited higher methane production regardless of the ammonium level, indicating that functional redundancy is crucial in maintaining the system's efficiency. Further analysis of the metagenome-assembled genomes within different functional guilds revealed that the extent of redundancy decreased along the direction of the anaerobic digestion flow, and the role of functional redundancy appeared to be related to the stress level. The study also found that microbial diversity of key functional populations might play a more important role than their abundance on the system's performance under stress. The findings provide direct evidence and highlight the critical role of functional redundancy in enhancing the efficiency and stability of anaerobic digestion.


Assuntos
Compostos de Amônio , Microbiota , Anaerobiose , Reatores Biológicos , Metagenoma , Metano
8.
Environ Sci Technol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374327

RESUMO

The artificial sweetener acesulfame is a persistent pollutant in wastewater worldwide. So far, only a few bacterial isolates were recently found to degrade acesulfame efficiently. In Bosea and Chelatococcus strains, a Mn2+-dependent metallo-ß-lactamase-type sulfatase and an amidase signature family enzyme catalyze acesulfame hydrolysis via acetoacetamide-N-sulfonate to acetoacetate. Here, we describe a new acesulfame sulfatase in Shinella strains isolated from wastewater treatment plants in Germany. Their genomes do not encode the Mn2+-dependent sulfatase. Instead, a formylglycine-dependent sulfatase gene was found, together with the acetoacetamide-N-sulfonate amidase gene on a plasmid shared by all known acesulfame-degrading Shinella strains. Heterologous expression, proteomics, and size exclusion chromatography corroborated the physiological function of the Shinella sulfatase in acesulfame hydrolysis. Since both acesulfame sulfatase types are absent in other bacterial genomes or metagenome-assembled genomes, we surveyed 73 tera base pairs of wastewater-associated metagenome raw data sets. Bosea/Chelatococcus sulfatase gene signatures were regularly found from 2013, particularly in North America, Europe, and East Asia, whereas Shinella sulfatase gene signatures were first detected in 2020. Moreover, signatures for the Shinella sulfatase and amidase genes co-occur only in six data sets from China, Finland, and Mexico, suggesting that the Shinella genes were enriched or introduced quite recently in wastewater treatment facilities.

9.
Antonie Van Leeuwenhoek ; 117(1): 23, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217803

RESUMO

A survey for bacteria of the genus Thiothrix indicated that they inhabited the area where the water of the Zmeiny geothermal spring (northern basin of Lake Baikal, Russia) mixed with the lake water. In the coastal zone of the lake oxygen (8.25 g/L) and hydrogen sulfide (up to 1 mg/L) were simultaneously present at sites of massive growth of these particular Thiothrix bacteria. Based on the analysis of the morphological characteristics and sequence of individual genes (16S rRNA, rpoB and tilS), we could not attribute the Thiothrix from Lake Baikal to any of the known species of this genus. To determine metabolic capabilities and phylogenetic position of the Thiothrix sp. from Lake Baikal, we analyzed their whole genome. Like all members of this genus, the bacteria from Lake Baikal were capable of organo-heterotrophic, chemolithoheterotrophic, and chemolithoautotrophic growth and differed from its closest relatives in the spectrum of nitrogen and sulfur cycle genes as well as in the indices of average nucleotide identity (ANI < 75-94%), amino acid identity (AAI < 94%) and in silico DNA-DNA hybridization (dDDH < 17-57%), which were below the boundary of interspecies differences, allowing us to identify them as novel candidate species.


Assuntos
Fontes Termais , Thiothrix , Thiothrix/genética , Thiothrix/metabolismo , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Baías , Federação Russa , Bactérias/genética , Lagos/microbiologia , Água , Sulfetos/metabolismo , Genômica , DNA
10.
J Proteome Res ; 22(2): 387-398, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36508259

RESUMO

The studies of microbial communities have drawn increased attention in various research fields such as agriculture, environment, and human health. Recently, metaproteomics has become a powerful tool to interpret the roles of the community members by investigating the expressed proteins of the microbes. However, analyzing the metaproteomic data sets at genome resolution is still challenging because of the lack of efficient bioinformatics tools. Here we develop MetaLab-MAG, a specially designed tool for the characterization of microbiomes from metagenome-assembled genomes databases. MetaLab-MAG was evaluated by analyzing various human gut microbiota data sets and performed comparably or better than searching the gene catalog protein database directly. MetaLab-MAG can quantify the genome-level microbiota compositions and supports both label-free and isobaric labeling-based quantification strategies. MetaLab-MAG removes the obstacles of metaproteomic data analysis and provides the researchers with in-depth and comprehensive information from the microbiomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Metagenoma , Proteômica , Microbiota/genética , Microbioma Gastrointestinal/genética , Biologia Computacional , Metagenômica
11.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36472532

RESUMO

Host-associated microbiomes are essential for a multitude of biological processes. Placed at the contact zone between external and internal environments, the little-studied oral microbiome has important roles in host physiology and health. Here, we investigate the roles of host evolutionary relationships and ecology in shaping the oral microbiome in three closely related gorilla subspecies (mountain, Grauer's, and western lowland gorillas) using shotgun metagenomics of 46 museum-preserved dental calculus samples. We find that the oral microbiomes of mountain gorillas are functionally and taxonomically distinct from the other two subspecies, despite close evolutionary relationships and geographic proximity with Grauer's gorillas. Grauer's gorillas show intermediate bacterial taxonomic and functional, and dietary profiles. Altitudinal differences in gorilla subspecies ranges appear to explain these patterns, suggesting a close connection between dental calculus microbiomes and the environment, likely mediated through diet. This is further supported by the presence of gorilla subspecies-specific phyllosphere/rhizosphere taxa in the oral microbiome. Mountain gorillas show a high abundance of nitrate-reducing oral taxa, which may promote adaptation to a high-altitude lifestyle by modulating blood pressure. Our results suggest that ecology, rather than evolutionary relationships and geographic distribution, shape the oral microbiome in these closely related species.


Assuntos
Hominidae , Microbiota , Animais , Gorilla gorilla , Filogenia , Cálculos Dentários , Microbiota/genética
12.
Funct Integr Genomics ; 23(2): 122, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043060

RESUMO

Bacterial and archaeal CRISPR-Cas systems provide adaptive immune protection against foreign mobile genetic elements. When viruses infect bacteria, a small portion of the viral DNA is inserted into the bacterial DNA in a specific pattern to produce segments known as CRISPR arrays. Metagenome assembled genomes (MAGs) were used in our study to identify the CRISPR sequence for determining the interacted phage. Metagenomic data from a coal mine was used to perform a computational study. From raw reads, 206151 contigs were assembled. Then contigs were clustered into 150 Metagenome assembled genomes from which 78 non-redundant MAGs were selected. Using the CHECKM standard, seven MAGs were found to have >80 completeness and <20 contaminations. Those MAGs were analyzed for the presence of CRISPR elements. Out of seven MAGs, four MAGs have the CRISPR elements and are searched against the VIROblast database. CRISPR arrays have 4, 1, 3, and 7 spacer sequences in the MAGs of Burkholderia, Acinetobacter, Oxalobacteraceae, and Burkholderia multivorans respectively. The uncultured Caudovirales phage genomic regions were present in the genomes of Burkholderia, Oxalobacteriaceae, and Burkholderia multivorans. This study follows the unconventional metagenomics workflow to provide a better understanding of bacteria and phage interactions.


Assuntos
Bacteriófagos , Burkholderia , Metagenoma , Burkholderia/genética , Bacteriófagos/genética , Carvão Mineral , Metagenômica
13.
Curr Genet ; 69(4-6): 213-234, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37237157

RESUMO

The demand for and acceptance of probiotics is determined by their quality and safety. Illumina NGS sequencing and analytics were used to examine eight marketed probiotics. Up to the species level, sequenced DNA was taxonomically identified, and relative abundances were determined using Kaiju. The genomes were constructed using GTDB and validated through PATRICK and TYGS. A FastTree 2 phylogenetic tree was constructed using several type strain sequences from relevant species. Bacteriocin and ribosomally synthesized polypeptide (RiPP) genes were discovered, and a safety check was performed to test for toxins, antibiotic resistance, and genetic drift genes. Except for two products with unclaimed species, the labeling was taxonomically correct. In three product formulations, Lactobacillus acidophilus, Limosilactobacillus reuteri, Lacticaseibacillus paracasei, and Bifidobacterium animalis exhibited two to three genomic alterations, while Streptococcus equinus was found in one. TYGS and GDTB discovered E. faecium and L. paracasei in distinctly different ways. All the bacteria tested had the genetic repertoire to tolerate GIT transit, although some exhibited antibiotic resistance, and one strain had two virulence genes. Except for Bifidobacterium strains, the others revealed a variety of bacteriocins and ribosomally synthesized polypeptides (RiPP), 92% of which were unique and non-homologous to known ones. Plasmids and mobile genetic elements are present in strains of L. reuteri (NPLps01.et_L.r and NPLps02.uf_L.r), Lactobacillus delbrueckii (NPLps01.et_L.d), Streptococcus thermophilus (NPLps06.ab_S.t), and E. faecium (NPLps07.nf_E.f). Our findings support the use of metagenomics to build better and efficient production and post-production practices for probiotic quality and safety assessment.


Assuntos
Bacteriocinas , Probióticos , Metagenoma , Filogenia , Lactobacillus acidophilus/genética , Plasmídeos , Bacteriocinas/genética
14.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33758906

RESUMO

Recent advances in high-throughput sequencing technologies and computational methods have added a new dimension to metagenomic data analysis i.e. genome-resolved metagenomics. In general terms, it refers to the recovery of draft or high-quality microbial genomes and their taxonomic classification and functional annotation. In recent years, several studies have utilized the genome-resolved metagenome analysis approach and identified previously unknown microbial species from human and environmental metagenomes. In this review, we describe genome-resolved metagenome analysis as a series of four necessary steps: (i) preprocessing of the sequencing reads, (ii) de novo metagenome assembly, (iii) genome binning and (iv) taxonomic and functional analysis of the recovered genomes. For each of these four steps, we discuss the most commonly used tools and the currently available pipelines to guide the scientific community in the recovery and subsequent analyses of genomes from any metagenome sample. Furthermore, we also discuss the tools required for validation of assembly quality as well as for improving quality of the recovered genomes. We also highlight the currently available pipelines that can be used to automate the whole analysis without having advanced bioinformatics knowledge. Finally, we will highlight the most widely adapted and actively maintained tools and pipelines that can be helpful to the scientific community in decision making before they commence the analysis.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Genoma Microbiano , Metagenoma , Metagenômica/métodos , Microbiota/genética , Fezes/microbiologia , Genitália/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Boca/microbiologia , Análise de Sequência de DNA , Pele/microbiologia , Microbiologia do Solo , Microbiologia da Água
15.
BMC Microbiol ; 23(1): 45, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809975

RESUMO

BACKGROUND: The phylum Chloroflexi is highly abundant in a wide variety of wastewater treatment bioreactors. It has been suggested that they play relevant roles in these ecosystems, particularly in degrading carbon compounds and on structuring flocs or granules. Nevertheless, their function is not yet well understood as most species have not been isolated in axenic cultures. Here we used a metagenomic approach to investigate Chloroflexi diversity and their metabolic potential in three environmentally different bioreactors: a methanogenic full-scale reactor, a full-scale activated sludge reactor and a lab scale anammox reactor. RESULTS: Differential coverage binning approach was used to assemble the genomes of 17 new Chloroflexi species, two of which are proposed as new Candidatus genus. In addition, we recovered the first representative genome belonging to the genus 'Ca. Villigracilis'. Even though samples analyzed were collected from bioreactors operating under different environmental conditions, the assembled genomes share several metabolic features: anaerobic metabolism, fermentative pathways and several genes coding for hydrolytic enzymes. Interestingly, genome analysis from the anammox reactor indicated a putative role of Chloroflexi in nitrogen conversion. Genes related to adhesiveness and exopolysaccharides production were also detected. Complementing sequencing analysis, filamentous morphology was detected by Fluorescent in situ hybridization. CONCLUSION: Our results suggest that Chloroflexi participate in organic matter degradation, nitrogen removal and biofilm aggregation, playing different roles according to the environmental conditions.


Assuntos
Chloroflexi , Esgotos , Chloroflexi/genética , Chloroflexi/metabolismo , Ecossistema , Hibridização in Situ Fluorescente , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Anaerobiose , Nitrogênio/metabolismo , Oxirredução
16.
Arch Microbiol ; 205(8): 292, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470847

RESUMO

Despite its toxicity to many organisms, including most prokaryotes, carbon monoxide (CO) is utilized by some aerobic and anaerobic prokaryotes. Hydrogenogenic CO utilizers employ carbon monoxide dehydrogenase (CODH) and energy-converting hydrogenase (ECH) to oxidize CO and reduce protons to produce H2. Those prokaryotes constitute a rare biosphere and are difficult to detect even with PCR amplification and with metagenomic analyses. In this study, anaerobic CO-enrichment cultures followed by construction of metagenome assembled genomes (MAGs) detected high-quality MAGs from potential hydrogenogenic CO utilizers. Of 32 MAGs constructed, 5 were potential CO utilizer harboring CODH genes. Of the five MAGs, two were classified into the genus Thermolithobacter on the basis of 16S rRNA sequence identity, related to Carboxydocella tharmautotrophica 41, with an average nucleotide identity (ANI) of approximately 72%. Additionally, two were related to Geoglobus acetivorans with ANI values ranging from 75 to 77% to G. acetivorans SBH6, and one MAG was identified as Desulfotomaculum kuznetsovii with an ANI > 96% to D. kuznetsovii DSM 6115. The two Thermolithobacter MAGs identified in this study contained CODH-ECH gene clusters, and were therefore identified as potential hydrogenogenic CO utilizers. However, these MAGs harbored three CODH gene clusters that showed distinct physiological functions in addition to CODH-ECH gene clusters. In total, the five potential CO utilizer MAGs contained sixteen CODH genes. Among those CODHs, four sets did not cluster with any known CODH protein sequences (with an identity of > 90%), and the CODH database was expanded.


Assuntos
Monóxido de Carbono , Metagenoma , Monóxido de Carbono/metabolismo , Anaerobiose , RNA Ribossômico 16S/genética , Firmicutes/genética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo
17.
Int Microbiol ; 26(4): 893-906, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36933182

RESUMO

Low microbial biomass in the lungs, high host-DNA contamination and sampling difficulty limit the study on lung microbiome. Therefore, little is still known about lung microbial communities and their functions. Here, we perform a preliminary exploratory study to investigate the composition of swine lung microbial community using shotgun metagenomic sequencing and compare the microbial communities between healthy and severe-lesion lungs. We collected ten lavage-fluid samples from swine lungs (five from healthy lungs and five from severe-lesion lungs), and obtained their metagenomes by shotgun metagenomic sequencing. After filtering host genomic DNA contamination (93.5% ± 1.2%) in the lung metagenomic data, we annotated swine lung microbial communities ranging from four domains to 645 species. Compared with previous taxonomic annotation of the same samples by the 16S rRNA gene amplicon sequencing, it annotated the same number of family taxa but more genera and species. We next performed an association analysis between lung microbiome and host lung-lesion phenotype. We found three species (Mycoplasma hyopneumoniae, Ureaplasma diversum, and Mycoplasma hyorhinis) were associated with lung lesions, suggesting they might be the key species causing swine lung lesions. Furthermore, we successfully reconstructed the metagenome-assembled genomes (MAGs) of these three species using metagenomic binning. This pilot study showed us the feasibility and relevant limitations of shotgun metagenomic sequencing for the characterization of swine lung microbiome using lung lavage-fluid samples. The findings provided an enhanced understanding of the swine lung microbiome and its role in maintaining lung health and/or causing lung lesions.


Assuntos
Metagenoma , Microbiota , Suínos , Projetos Piloto , RNA Ribossômico 16S/genética , Microbiota/genética , Pulmão/microbiologia , Metagenômica , Animais
18.
Environ Sci Technol ; 57(48): 19965-19978, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37972223

RESUMO

Bioaerosol pollution poses a substantial threat to human health during municipal food waste (FW) recycling. However, bioaerosol-borne antibiotic-resistant genes (ARGs) have received little attention. Herein, 48 metagenomic data were applied to study the prevalence of PM2.5-borne ARGs in and around full-scale food waste treatment plants (FWTPs). Overall, FWTP PM2.5 (2.82 ± 1.47 copies/16S rRNA gene) harbored comparable total abundance of ARGs to that of municipal wastewater treatment plant PM2.5 (WWTP), but was significantly enriched with the multidrug type (e.g., AdeC/I/J; p < 0.05), especially the abundant multidrug ARGs could serve as effective indicators to define resistome profiles of FWTPs (Random Forest accuracy >92%). FWTP PM2.5 exhibited a decreasing enrichment of total ARGs along the FWTP-downwind-boundary gradient, eventually reaching levels comparable to urban PM2.5 (1.46 ± 0.21 copies/16S rRNA gene, N = 12). The combined analysis of source-tracking, metagenome-assembled genomes (MAGs), and culture-based testing provides strong evidence that Acinetobacter johnsonii-dominated pathogens contributed significantly to shaping and disseminating multidrug ARGs, while abiotic factors (i.e., SO42-) indirectly participated in these processes, which deserves more attention in developing strategies to mitigate airborne ARGs. In addition, the exposure level of FWTP PM2.5-borne resistant pathogens was about 5-11 times higher than those in urban PM2.5, and could be more severe than hospital PM2.5 in certain scenarios (<41.53%). This work highlights the importance of FWTP in disseminating airborne multidrug ARGs and the need for re-evaluating the air pollution induced by municipal FWTP in public health terms.


Assuntos
Genes Bacterianos , Eliminação de Resíduos , Humanos , Alimentos , RNA Ribossômico 16S , Bactérias/genética , Antibacterianos/farmacologia , Material Particulado
19.
Environ Sci Technol ; 57(20): 7698-7708, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37161271

RESUMO

Antimicrobial peptides are a promising new class of antimicrobials that could address the antibiotic resistance crisis, which poses a major threat to human health. These peptides are present in all kingdoms of life, but especially in microorganisms, having multiple origins in diverse taxa. To date, there has been no global study on the diversity of antimicrobial peptides, the hosts in which these occur, and the potential for resistance to these agents. Here, we investigated the diversity and number of antimicrobial peptides in four main habitats (aquatic, terrestrial, human, and engineered) by analyzing 52,515 metagenome-assembled genomes. The number of antimicrobial peptides was higher in the human gut microbiome than in other habitats, and most hosts of antimicrobial peptides were habitat-specific. The relative abundance of genes that confer resistance to antimicrobial peptides varied between habitats and was generally low, except for the built environment and on human skin. The horizontal transfer of potential resistance genes among these habitats was probably constrained by ecological barriers. We systematically quantified the risk of each resistance determinant to human health and found that nearly half of them pose a threat, especially those that confer resistance to multiple AMPs and polymyxin B. Our results help identify the biosynthetic potential of antimicrobial peptides in the global microbiome, further identifying peptides with a low risk of developing resistance.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Microbiota , Humanos , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Antibacterianos/farmacologia
20.
Environ Sci Technol ; 57(18): 7273-7284, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097110

RESUMO

Our understanding of the role urbanization has in augmenting invasive species that carry human bacterial pathogens and antimicrobial resistance (AMR) remains poorly understood. Here, we investigated the gut bacterial communities, antibiotic resistance genes (ARGs) and potential antibiotic-resistant pathogens in giant African snails (Achatina fulica) collected across an urbanization gradient in Xiamen, China (n = 108). There was a lack of correlation between the microbial profiles of giant African snails and the soils of their habitats, and the resistome and human-associated bacteria were significantly higher than those of native snails as well as soils. We observed high diversity (601 ARG subtypes) and abundance (1.5 copies per 16S rRNA gene) of giant African snail gut resistome. Moreover, giant African snails in more urban areas had greater diversity and abundance of high-risk ARGs and potential human bacterial pathogens (e.g., ESKAPE pathogens). We highlight that urbanization significantly impacted the gut microbiomes and resistomes of these invasive snails, indicating that they harbor greater biological contaminants such as ARGs and potential human bacterial pathogens than native snails and soils. This study advances our understanding of the effect of urbanization on human bacterial pathogens and AMR in a problematic invasive snail and should help combat risks associated with invasive species under the One Health framework.


Assuntos
Antibacterianos , Urbanização , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Genes Bacterianos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA