Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848322

RESUMO

Cancer immunotherapy harnesses the immune system to combat cancer, yet tumors often evade immune surveillance through immunosuppressive cells. Herein, we report an organic semiconducting sono-metallo-detonated immunobomb (SMIB) to spatiotemporally tame immunosuppressive cells in situ. SMIB consists of an amphiphilic semiconducting polymer (SP) with a repeatable thiophene-based Schiff base serving as an iron ion chelator (Fe3+). SMIB increases sonochemical activity through iron chelation and reduces immunosuppressive cell differentiation with metals and sonochemicals, thereby decreasing the irradiation dose. Upon ultrasound irradiation, SMIB acts as a sono-metallo-detonated immunobomb and inhibits Tregs via the mTOR pathway and M2 macrophage polarization through GPX4 regulation. Ultrasensitized sono-generated reactive oxygen species also promote activation of antigen-presenting cells in deep solid tumors (1 cm), resulting in cytotoxic T cell infiltration and enhanced antitumor efficacy. This platform provides a versatile approach for synergistic sono- and metalloregulation of immunosuppressive cells in situ.

2.
Small ; : e2402308, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39114869

RESUMO

Metalloimmunotherapy has achieved great preclinical success against malignant tumors. Nonetheless, the limited immune cell infiltration and impaired immunogenicity within the tumor microenvironment (TME) significantly hinder its translation to clinical applications. In this study, a zinc coordination lipid nanoparticle is developed loaded with calcium peroxide hydrate (CaO2) nanoparticles and the STING agonist diABZI-2, which is termed A-CaO2-Zn-LNP. The release of Zn2+ from the A-CaO2-Zn-LNP and the calcium overload synergistically induced immunogenic cell death (ICD). In addition, CaO2 nanoparticles can consume H+ and release oxygen (O2) under acidic conditions. This treatment increased the pH and alleviated the hypoxia of the TME. Along with cGAS-STING activation by diABZI-2, A-CaO2-Zn-LNP ultimately results in enhanced anti-tumor systemic immunity and long-term immune memory via alleviating the immunosuppressive microenvironment. Taken together, A-CaO2-Zn-LNP offers a new nanoplatform that expands its application for cancer treatment by metalloimmunotheray.

3.
Angew Chem Int Ed Engl ; 62(9): e202215467, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36591974

RESUMO

Oxygen-deficient molybdenum oxide (MoOX ) nanomaterials are prepared as novel nanosensitizers and TME-stimulants for ultrasound (US)-enhanced cancer metalloimmunotherapy. After PEGylation, MoOX -PEG exhibits efficient capability for US-triggered reactive oxygen species (ROS) generation and glutathione (GSH) depletion. Under US irradiation, MoOX -PEG generates a massive amount of ROS to induce cancer cell damage and immunogenic cell death (ICD), which can effectively suppress tumor growth. More importantly, MoOX -PEG itself further stimulates the maturation of dendritic cells (DCs) and triggeres the activation of the cGAS-STING pathway to enhance the immunological effect. Due to the robust ICD induced by SDT and efficient DC maturation stimulated by MoOX -PEG, the combination treatment of MoOX -triggered SDT and aCTLA-4 further amplifies antitumor therapy, inhibits cancer metastases, and elicits robust immune responses to effectively defeat abscopal tumors.


Assuntos
Neoplasias , Óxidos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Molibdênio , Neoplasias/tratamento farmacológico , Hipóxia , Oxigênio/metabolismo , Linhagem Celular Tumoral
4.
Angew Chem Int Ed Engl ; 62(43): e202310178, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37671691

RESUMO

Sono-immunotherapy holds great potential for deep tumor inhibition; however, smart sono-therapeutic agents to simultaneously eliminate 'domestic' tumor cells and regulate the 'community' tumor immune microenvironment have rarely been developed. Herein, we report a spatiotemporally controllable semiconducting iron-chelated nano-metallomodulator (SINM) for hypersensitive sono-metallo-immunotherapy of cancer. SINM consists of a semiconducting polymer (SP) backbone chelating iron ions (Fe3+ ) with thiophene-based Schiff base structure, and a hydrophilic side chain. Upon accumulation in tumors after systemic administration, SINM specifically arouses ferroptosis and M1 macrophage polarization due to its response toward the tumor redox environment; meanwhile, the chelation of Fe3+ enhances the sono-sensitizing effect of SPs, leading to enhanced generation of reactive oxygen species for immunogenic cell death. Such combined sonodynamic metallo-immunotherapy of SINM efficiently ablates deep tumor and spatiotemporally regulates immunophenotypes.


Assuntos
Quelantes de Ferro , Neoplasias , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Fatores Imunológicos , Adjuvantes Imunológicos , Neoplasias/tratamento farmacológico , Imunoterapia , Ferro , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Adv Sci (Weinh) ; 11(6): e2307389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064201

RESUMO

Cancer therapeutic vaccines are powerful tools for immune system activation and eliciting protective responses against tumors. However, their efficacy has often been hindered by weak and slow immune responses. Here, the authors introduce an immunization strategy employing senescent erythrocytes to facilitate the accumulation of immunomodulatory zinc-Alum/ovalbumin (ZAlum/OVA) nanovaccines within both the spleen and solid tumors by temporarily saturating liver macrophages. This approach sets the stage for boosted cancer metalloimmunotherapy through a cascade immune activation. The accumulation of ZAlum/OVA nanovaccines in the spleen substantially enhances autophagy-dependent antigen presentation in dendritic cells, rapidly initiating OVA-specific T-cell responses against solid tumors. Concurrently, ZAlum/OVA nanovaccines accumulated in the tumor microenvironment trigger immunogenic cell death, leading to the induction of individualized tumor-associated antigen-specific T cell responses and increased T cell infiltration. This erythrocyte-assisted cascade immune activation using ZAlum/OVA nanovaccines results in rapid and robust antitumor immunity induction, holding great potential for clinical cancer metalloimmunotherapy.


Assuntos
Compostos de Alúmen , Vacinas Anticâncer , Neoplasias , Humanos , Ovalbumina , Nanovacinas , Neoplasias/tratamento farmacológico , Apresentação de Antígeno , Zinco , Microambiente Tumoral
6.
ACS Nano ; 18(11): 8143-8156, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38436248

RESUMO

The complexity and heterogeneity of individual tumors have hindered the efficacy of existing therapeutic cancer vaccines, sparking intensive interest in the development of more effective in situ vaccines. Herein, we introduce a cancer nanovaccine for reactive oxygen species-augmented metalloimmunotherapy in which FeAl-layered double hydroxide (LDH) is used as a delivery vehicle with dihydroartemisinin (DHA) as cargo. The LDH framework is acid-labile and can be degraded in the tumor microenvironment, releasing iron ions, aluminum ions, and DHA. The iron ions contribute to aggravated intratumoral oxidative stress injury by the synergistic Fenton reaction and DHA activation, causing apoptosis, ferroptosis, and immunogenic cell death in cancer cells. The subsequently released tumor-associated antigens with the aluminum adjuvant form a cancer nanovaccine to generate robust and long-term immune responses against cancer recurrence and metastasis. Moreover, Fe ion-enabled T1-weighted magnetic resonance imaging can facilitate real-time tumor therapy monitoring. This cancer-nanovaccine-mediated metalloimmunotherapy strategy has the potential for revolutionizing the precision immunotherapy landscape.


Assuntos
Artemisininas , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Nanovacinas , Alumínio , Neoplasias/tratamento farmacológico , Ferro , Hidróxidos , Imunoterapia/métodos , Microambiente Tumoral
7.
ACS Nano ; 18(20): 12830-12844, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709246

RESUMO

The immunosuppressive microenvironment of cervical cancer significantly hampers the effectiveness of immunotherapy. Herein, PEGylated manganese-doped calcium sulfide nanoparticles (MCSP) were developed to effectively enhance the antitumor immune response of the cervical cancer through gas-amplified metalloimmunotherapy with dual activation of pyroptosis and STING pathway. The bioactive MCSP exhibited the ability to rapidly release Ca2+, Mn2+, and H2S in response to the tumor microenvironment. H2S disrupted the calcium buffer system of cancer cells by interfering with the oxidative phosphorylation pathway, leading to calcium overload-triggered pyroptosis. On the other hand, H2S-mediated mitochondrial dysfunction further promoted the release of mitochondrial DNA (mtDNA), enhancing the activation effect of Mn2+ on the cGAS-STING signaling axis and thereby activating immunosuppressed dendritic cells. The released H2S acted as an important synergist between Mn2+ and Ca2+ by modulating dual signaling mechanisms to bridge innate and adaptive immune responses. The combination of MCSP NPs and PD-1 immunotherapy achieved synergistic antitumor effects and effectively inhibited tumor growth. This study reveals the potential collaboration between H2S gas therapy and metalloimmunotherapy and provides an idea for the design of nanoimmunomodulators for rational regulation of the immunosuppressive tumor microenvironment.


Assuntos
Imunoterapia , Proteínas de Membrana , Piroptose , Microambiente Tumoral , Neoplasias do Colo do Útero , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/terapia , Feminino , Humanos , Camundongos , Animais , Piroptose/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Manganês/química , Manganês/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cálcio/metabolismo , Camundongos Endogâmicos BALB C , Ensaios de Seleção de Medicamentos Antitumorais
8.
ACS Nano ; 18(33): 21855-21872, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39109520

RESUMO

Malignant pleural effusions (MPEs) are hard to treat, and their onset usually signals terminal cancer. Immunotherapies hold promise but must overcome the immunosuppressive MPE microenvironment. Herein, we treat MPEs via synergistically combining two emerging cancer therapy modalities: enzyme-dynamic therapy (EDT) and metalloimmunotherapy. To do so, a nanoplatform termed "A-R-SOME" was developed which comprises MPE-targeted M1 type extracellular vesicles (EVs) loaded with (1) a manganese-based superoxide dismutase (SOD) enzyme, (2) stimulator of interferon genes (STING) agonist diABZI-2, and (3) signal transducer and an activator of transcription 3 (STAT3) small interfering RNA. Endogenous reactive oxygen species within tumors induced immunogenic cell death by EDT, along with STING activation by both Mn and diABZI-2, and suppression of the STAT3 pathway. Systemically administered A-R-SOME alleviated the MPE immunosuppressive microenvironment, triggered antitumor systemic immunity, and long-term immune memory, leading to the complete eradication of MPE and pleural tumors with 100% survival rate in an aggressive murine model. A-R-SOME-induced immune effects were also observed in human patient-derived MPE, pointing toward the translation potential of A-R-SOME as an experimental malignancy treatment.


Assuntos
Vesículas Extracelulares , Imunoterapia , Derrame Pleural Maligno , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animais , Humanos , Camundongos , Superóxido Dismutase/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , RNA Interferente Pequeno/genética , Feminino , Fator de Transcrição STAT3/metabolismo , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
9.
ACS Nano ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148423

RESUMO

The activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) has been recognized as one of the most promising immunotherapeutic strategies to induce innate antitumor immune responses. However, it is far from effective to just activate the cGAS-STING pathway, owing to abundant immunosuppressive cells that infiltrate the tumor microenvironment (TME) to impair antitumor immunity. Here, we present the smart design of biodegradable Mn-doped mesoporous silica (MM) nanoparticles with metal-organic framework (MOF) gating and hyaluronic acid (HA)-modified erythrocyte membrane (eM) camouflaging to coload cisplatin (CDDP) and SR-717 (a STING agonist) for long-circulating tumor-tropism synergistic chemo-metalloimmunotherapy by cascade cGAS-STING activation. Once internalized by tumor cells, the acidity/redox-responsive gated MOF rapidly disintegrates to release SR-717 and exposes the dual-responsive MM to decompose with CDDP release, thus inducing damage to double-stranded DNA (dsDNA) in cancer cells. As tumor-specific antigens, these dsDNA fragments released from tumor cells can trigger cGAS-STING activation and enhance dendritic cell (DC) maturation and cytotoxic T cell (CTL) infiltration, thus giving rise to excellent therapeutic effects for efficient tumor regression. Overall, this custom-designed biodegradable long-circulating nanoagonist represents a paradigm of nanotechnology in realizing the synergistic cooperation of chemotherapy and metalloimmunotherapy based on cascade cGAS-STING activation for future oncological applications.

10.
ACS Appl Mater Interfaces ; 16(14): 17129-17144, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533538

RESUMO

Immune-cell-derived membranes have garnered significant attention as innovative delivery modalities in cancer immunotherapy for their intrinsic immune-modulating functionalities and superior biocompatibilities. Integrating additional parental cell membranes or synthetic lipid vesicles into cellular vesicles can further potentiate their capacities to perform combinatorial pharmacological activities in activating antitumor immunity, thus providing insights into the potential of hybrid cellular vesicles as versatile delivery vehicles for cancer immunotherapy. Here, we have developed a macrophage-membrane-derived hybrid vesicle that has the dual functions of transporting immunotherapeutic drugs and shaping the polarization of tumor-associated macrophages for cancer immunotherapy. The platform combines M1 macrophage-membrane-derived vesicles with CXCR4-binding-peptide-conjugated liposomes loaded with manganese and doxorubicin. The hybrid nanovesicles exhibited remarkable macrophage-targeting capacity through the CXCR4-binding peptide, resulting in enhanced macrophage polarization to the antitumoral M1 phenotype characterized by proinflammatory cytokine release. The manganese/doxorubicin-loaded hybrid vesicles in the CXCR4-expressing tumor cells evoked potent cancer cytotoxicity, immunogenic cell death of tumor cells, and STING activation. Moreover, cotreatment with manganese and doxorubicin promoted dendritic cell maturation, enabling effective tumor growth inhibition. In murine models of CT26 colon carcinoma and 4T1 breast cancer, intravenous administration of the manganese/doxorubicin-loaded hybrid vesicles elicited robust tumor-suppressing activity at a low dosage without adverse systemic effects. Local administration of hybrid nanovesicles also induced an abscessive effect in a bilateral 4T1 tumor model. This study demonstrates a promising biomimetic manganese/doxorubicin-based hybrid nanovesicle platform for effective cancer immunotherapy tailored to the tumor microenvironment, which may offer an innovative approach to combinatorial immunotherapy.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Animais , Camundongos , Feminino , Manganês/farmacologia , Biomimética , Doxorrubicina/uso terapêutico , Macrófagos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Imunoterapia/métodos , Peptídeos/farmacologia , Microambiente Tumoral , Linhagem Celular Tumoral , Receptores CXCR4/metabolismo
11.
Adv Mater ; 36(21): e2313029, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353366

RESUMO

Activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway has emerged as an efficient strategy to improve the therapeutic outcomes of immunotherapy. However, the "constantly active" mode of current STING agonist delivery strategies typically leads to off-target toxicity and hyperimmunity. To address this critical issue, herein a metal-organic frameworks-based nanoagonist (DZ@A7) featuring tumor-specific and near-infrared (NIR) light-enhanced decomposition is constructed for precisely localized STING activation and photodynamic-metalloimmunotherapy. The engineered nanoagonist enabled the generation of mitochondria-targeted reactive oxygen species under NIR irradiation to specifically release mitochondrial DNA (mtDNA) and inhibit the repair of nuclear DNA via hypoxia-responsive drugs. Oxidized tumor mtDNA serves as an endogenous danger-associated molecular pattern that activates the cGAS-STING pathway. Concurrently, NIR-accelerated zinc ions overloading in cancer cells further enhance the cGAS enzymatic activity through metalloimmune effects. By combining the synergistically enhanced activation of the cGAS-STING pathway triggered by NIR irradiation, the engineered nanoagonist facilitated the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes for primary tumor eradication, which also established a long-term anti-tumor immunity to suppress tumor metastasis. Therefore, the developed nanoagonist enabled NIR-triggered, agonist-free, and tandem-amplified activation of the cGAS-STING pathway, thereby offering a distinct paradigm for photodynamic-metalloimmunotherapy.


Assuntos
Imunoterapia , Raios Infravermelhos , Proteínas de Membrana , Estruturas Metalorgânicas , Nucleotidiltransferases , Fotoquimioterapia , Fotoquimioterapia/métodos , Animais , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Camundongos , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , DNA Mitocondrial/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
12.
Theranostics ; 14(10): 3810-3826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994034

RESUMO

Rationale: Surgical resection is a primary treatment for solid tumors, but high rates of tumor recurrence and metastasis post-surgery present significant challenges. Manganese (Mn2+), known to enhance dendritic cell-mediated cancer immunotherapy by activating the cGAS-STING pathway, has potential in post-operative cancer management. However, achieving prolonged and localized delivery of Mn2+ to stimulate immune responses without systemic toxicity remains a challenge. Methods: We developed a post-operative microenvironment-responsive dendrobium polysaccharide hydrogel embedded with Mn2+-pectin microspheres (MnP@DOP-Gel). This hydrogel system releases Mn2+-pectin microspheres (MnP) in response to ROS, and MnP shows a dual effect in vitro: promoting immunogenic cell death and activating immune cells (dendritic cells and macrophages). The efficacy of MnP@DOP-Gel as a post-surgical treatment and its potential for immune activation were assessed in both subcutaneous and metastatic melanoma models in mice, exploring its synergistic effect with anti-PD1 antibody. Result: MnP@DOP-Gel exhibited ROS-responsive release of MnP, which could exert dual effects by inducing immunogenic cell death of tumor cells and activating dendritic cells and macrophages to initiate a cascade of anti-tumor immune responses. In vivo experiments showed that the implanted MnP@DOP-Gel significantly inhibited residual tumor growth and metastasis. Moreover, the combination of MnP@DOP-Gel and anti-PD1 antibody displayed superior therapeutic potency in preventing either metastasis or abscopal brain tumor growth. Conclusions: MnP@DOP-Gel represents a promising drug-free strategy for cancer post-operative management. Utilizing this Mn2+-embedding and ROS-responsive delivery system, it regulates surgery-induced immune responses and promotes sustained anti-tumor responses, potentially increasing the effectiveness of surgical cancer treatments.


Assuntos
Dendrobium , Hidrogéis , Manganês , Camundongos Endogâmicos C57BL , Microesferas , Polissacarídeos , Animais , Camundongos , Hidrogéis/química , Manganês/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Dendrobium/química , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/terapia , Imunoterapia/métodos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Espécies Reativas de Oxigênio/metabolismo , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Melanoma Experimental/tratamento farmacológico
13.
Acta Biomater ; 181: 402-414, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38734282

RESUMO

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Animais , Imunoterapia/métodos , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Hipóxia Tumoral/efeitos dos fármacos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Oxaliplatina/farmacologia , Oxaliplatina/química , Óxidos/química , Óxidos/farmacologia , Manganês/química , Manganês/farmacologia , Humanos , Feminino , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Camundongos Endogâmicos C57BL
14.
J Control Release ; 357: 109-119, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738971

RESUMO

As metal ions play important roles in the process of immunomodulation, immunotherapy based on metal ions has attracted tremendous interests in recent years. Here, we screened common metal ions and found that Mn2+ could enhance the immune function in vitro. A new type of nanovaccine is thus fabricated by a biomimetic approach using nanoscale coordination polymer formed by Mn2+ and 2-methylimidazole (2-MI) to encapsulate ovalbumin (OVA) protein, a model antigen, obtaining OVA@MM nanoparticles. Compared to free OVA, OVA@MM nanoparticles could more effectively induce the maturation of bone marrow-derived dendritic cells (BMDCs) and their subsequent antigen cross-presentation. The particles made of Mn2+ and 2-MI could activate immune-regulated signal pathways to enhance the immune functions of BMDCs. Such OVA@MM nanovaccine could not only provide prophylactic effect to inhibit the growth of B16-OVA tumor on immunized mice, but also significantly inhibit tumor growth in the mice with B16-OVA tumor combined with anti-programmed cell death protein 1 (anti-PD-1) antibody. Therefore, this nanovaccine platform based on Mn2+, 2-MI and antigen may provide a simple, effective and broadly applicable strategy to enhance adaptive immunity against cancer and other diseases.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Manganês , Células Dendríticas , Neoplasias/metabolismo , Apresentação de Antígeno , Imunoterapia , Antígenos , Transdução de Sinais , Ovalbumina , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL
15.
J Control Release ; 354: 770-783, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702259

RESUMO

The poor cancer immunotherapy outcome has been closely related to immunosuppressive tumor microenvironment (TME), which usually inactivates the antitumor immune cells and leads to immune tolerance. Metalloimmunotherapy by supplementing nutritional metal ions into TME has emerged as a potential strategy to activate the tumor-resident immune cells. Herein, we engineered a magnesium-contained nano-aluminum adjuvant (NanoAlum) through hydrolyzing a mixture of Mg(OH)2 and Al(OH)3, which has highly similar components to commercial Imject Alum. Peritumoral injection of NanoAlum effectively neutralized the acidic TME while releasing Mg2+ to activate the tumor-resident T cells. Meanwhile, NanoAlum also blocked the autophagy pathway in tumor cells and subsequently induced cell apoptosis. The in vivo studies showed that merely peritumoral injection of NanoAlum successfully inhibited the growth of solid tumors in mice. On this basis, NanoAlum combined with chemical drug methotrexate or immunomodulatory adjuvant CpG further induced potent antigen-specific antitumor immunity. Overall, our study first provides a rational design for engineering tumor-targeted nanomodulator from clinical adjuvants to achieve effective cancer metalloimmunotherapy against solid tumors.


Assuntos
Alumínio , Neoplasias , Animais , Camundongos , Alumínio/farmacologia , Alumínio/uso terapêutico , Adjuvantes Imunológicos/farmacologia , Neoplasias/tratamento farmacológico , Imunoterapia , Linfócitos T , Adjuvantes Farmacêuticos/farmacologia , Microambiente Tumoral
16.
ACS Nano ; 17(16): 15905-15917, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37565626

RESUMO

Metal-organic frameworks (MOFs) show tremendous promise for drug delivery due to their structural and functional versatility. However, MOFs are usually used as biologically inert carriers in most cases. The creation of intrinsically immunostimulatory MOFs remains challenging. In this study, a facile and green synthesis method is proposed for the preparation of a manganese ion (Mn2+)-based immunostimulatory MOF (ISAMn-MOF) for cancer metalloimmunotherapy. ISAMn-MOF significantly facilitates the activation of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) related genes and signaling pathways in bone-marrow-derived dendritic cells (BMDCs). BMDCs treated with ISAMn-MOF secrete 4-fold higher type I interferon and 2- to 16-fold higher proinflammatory cytokines than those treated with equivalent MnCl2. ISAMn-MOF alone or its combination with immune checkpoint antibodies significantly suppresses tumor growth and metastasis and prolongs mouse survival. Mechanistic studies indicate that ISAMn-MOF treatment facilitates the infiltration of stimulatory immune cells in tumors and lymphoid organs. This study provides insight into the design of bioactive MOFs for improved cancer metalloimmunotherapy.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Camundongos , Animais , Estruturas Metalorgânicas/farmacologia , Manganês/farmacologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Neoplasias/tratamento farmacológico
17.
Pharmaceutics ; 15(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37514189

RESUMO

Although the promise of cancer immunotherapy has been partially fulfilled with the unprecedented clinical success of several immunotherapeutic interventions, some issues, such as limited response rate and immunotoxicity, still remain. Metalloimmunotherapy offers a new form of cancer immunotherapy that utilizes the inherent immunomodulatory features of metal ions to enhance anticancer immune responses. Their versatile functionalities for a multitude of direct and indirect anticancer activities together with their inherent biocompatibility suggest that metal ions can help overcome the current issues associated with cancer immunotherapy. However, metal ions exhibit poor drug-like properties due to their intrinsic physicochemical profiles that impede in vivo pharmacological performance, thus necessitating an effective pharmaceutical formulation strategy to improve their in vivo behavior. Metal-based nanoparticles provide a promising platform technology for reshaping metal ions into more drug-like formulations with nano-enabled engineering approaches. This review provides a general overview of cancer immunotherapy, the immune system and how it works against cancer cells, and the role of metal ions in the host response and immune modulation, as well as the impact of metal ions on the process via the regulation of immune cells. The preclinical studies that have demonstrated the potential of metal-based nanoparticles for cancer metalloimmunotherapy are presented for the representative nanoparticles constructed with manganese, zinc, iron, copper, calcium, and sodium ions. Lastly, the perspectives and future directions of metal-based nanoparticles are discussed, particularly with respect to their clinical applications.

18.
ACS Nano ; 16(10): 16909-16923, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36200692

RESUMO

Cancer immunotherapy holds great promise but is generally limited by insufficient induction of anticancer immune responses. Here, a metal micellar nanovaccine is developed by the self-assembly of manganese (Mn), a stimulator of interferon genes (STING) agonist (ABZI) and naphthalocyanine (ONc) coordinated nanoparticles (ONc-Mn-A) in maleimide-modified Pluronic F127 (malF127) micelles. Owing to synergy between Mn and ABZI, the nanovaccine, termed ONc-Mn-A-malF127, elevates levels of interferon-ß (IFNß) by 324- and 8-fold in vivo, compared to use of Mn or ABZI alone. As such, the activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-STING pathway induces sufficient dendritic cell (DC) maturation, eventually resulting in the death of CD8+ T cell-sensitive tumors and CD8+ T cell-resistant tumors by simultaneously promoting cytotoxic CD8+ T cells and NK cells, respectively. Furthermore, with ONc used as a Mn chelator and an efficient photosensitizer, photoinduced immunogenic cell death (ICD) of tumor cells releases damage-associated molecular patterns (DAMPs) and neoantigens from dying primary tumor cells upon laser irradiation, which are captured in situ by malF127 in tumor cells and then transported to DCs. After laser treatment, in addition to the photothermal therapy, immune responses characterized by the level of IFNß are further elevated by another 4-fold. In murine cancer models, ICD-based metalloimmunotherapy using the ONc-Mn-A-malF127 nanovaccine in a single dose by intravenous injection achieved eradication of primary and distant tumors. Taken together, ONc-Mn-A-malF127 offers a nanoplatform to enhance anticancer efficacy by metalloimmunotherapy and photoinduced ICD based immunotherapy with strong abscopal effect.


Assuntos
Interferons , Neoplasias , Camundongos , Animais , Interferons/metabolismo , Interferons/uso terapêutico , Micelas , Linfócitos T CD8-Positivos , Manganês/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Poloxâmero , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/uso terapêutico , Neoplasias/tratamento farmacológico , Imunoterapia , Antivirais/uso terapêutico , Interferon beta/uso terapêutico , Maleimidas , Quelantes , Antígenos de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA