Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Virol ; 98(6): e0164123, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38690874

RESUMO

Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galß1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Polissacarídeos , Receptores Virais , Proteínas Virais de Fusão , Ligação Viral , Humanos , Linhagem Celular , Metapneumovirus/metabolismo , Metapneumovirus/fisiologia , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Receptores Virais/química , Receptores Virais/metabolismo , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Interações entre Hospedeiro e Microrganismos , Proteoglicanas de Heparan Sulfato/metabolismo
2.
J Virol ; : e0079724, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311697

RESUMO

A key mediator of T cell impairment during respiratory virus infection is the inhibitory receptor PD-1. PD-1 is induced on T cells following antigen exposure, whereas proinflammatory cytokines upregulate the ligands PD-L1 and PD-L2. Respiratory virus infection leads to upregulation of PD-L1 on airway epithelial cells, dendritic cells, and alveolar macrophages. However, the role of PD-L1 on different cell types in acute respiratory virus infections is not known. We sought to determine the role of PD-L1 on different cell types in CD8+ T cell impairment. We found that PD-L1-/- mice challenged with human metapneumovirus or influenza showed a similar level of CD8+ T cell impairment compared to wild-type (WT) mice. Moreover, virus clearance was delayed in PD-L1-/- mice compared to WT. CD8+ T cells from PD-L1-deficient mice expressed higher levels of inhibitory receptors both at baseline and after respiratory virus infection. The antibody blockade of PD-L2 failed to restore function to the impaired cells. While reciprocal bone marrow chimeras between WT and PD-L1-/- mice did not restore CD8+ T cell function after the respiratory virus challenge, mice that received the PD-L1-/- bone marrow had higher inhibitory receptor expression on CD8+ cells. This discrepancy in the inhibitory receptor expression suggests that cells of the hematopoietic compartment contribute to T cell impairment on CD8+ T cells.IMPORTANCEThe phenomenon of pulmonary CD8+ T cell impairment with diminished antiviral function occurs during acute respiratory virus infection mediated by Programmed Cell Death-1 (PD-1) signaling. Moreover, PD-1 blockade enhances T cell function to hasten viral clearance. The ligand PD-L1 is expressed in many cell types, but which cells drive lung T cell impairment is not known. We used genetic approaches to determine the contribution of PD-L1 on lung T cell impairment. We found that PD-L2 cannot compensate for the loss of PD-L1, and PD-L1-deficient mice exhibit increased expression of other inhibitory receptors. Bone marrow chimeras between PD-L1-deficient and wild-type mice indicated that hematopoietic PD-L1 expression is associated with inhibitory receptor upregulation and impairment.

3.
Proc Natl Acad Sci U S A ; 119(25): e2203326119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696580

RESUMO

Human metapneumovirus (hMPV) is a leading cause of morbidity and hospitalization among children worldwide, however, no vaccines or therapeutics are currently available for hMPV disease prevention and treatment. The hMPV fusion (F) protein is the sole target of neutralizing antibodies. To map the immunodominant epitopes on the hMPV F protein, we isolated a panel of human monoclonal antibodies (mAbs), and the mAbs were assessed for binding avidity, neutralization potency, and epitope specificity. We found the majority of the mAbs target diverse epitopes on the hMPV F protein, and we discovered multiple mAb binding approaches for antigenic site III. The most potent mAb, MPV467, which had picomolar potency, was examined in prophylactic and therapeutic mouse challenge studies, and MPV467 limited virus replication in mouse lungs when administered 24 h before or 72 h after viral infection. We determined the structure of MPV467 in complex with the hMPV F protein using cryo-electron microscopy to a resolution of 3.3 Å, which revealed a complex novel prefusion-specific epitope overlapping antigenic sites II and V on a single protomer. Overall, our data reveal insights into the immunodominant antigenic epitopes on the hMPV F protein, identify a mAb therapy for hMPV F disease prevention and treatment, and provide the discovery of a prefusion-specific epitope on the hMPV F protein.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Virais , Metapneumovirus , Infecções por Paramyxoviridae , Proteínas Virais de Fusão , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , Antígenos Virais/química , Antígenos Virais/imunologia , Microscopia Crioeletrônica , Epitopos/imunologia , Humanos , Metapneumovirus/imunologia , Camundongos , Infecções por Paramyxoviridae/prevenção & controle , Prevenção Primária , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia
4.
J Infect Dis ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349230

RESUMO

BACKGROUND: Unlike influenza, information on the burden of human metapneumovirus (HMPV) as a cause of hospitalizations in adults with acute respiratory illness (ARI) is limited. METHODS: We compared the population-based incidence, seasonality, and clinical characteristics of these two viral infections among adults aged 20 years and over with ARI hospitalisations in Auckland, New Zealand, during 2012-2015 through the Southern Hemisphere Influenza Vaccine Effectiveness Research and Surveillance (SHIVERS) project. RESULTS: Of the 14,139 ARI hospitalisations, 276 (4.3%) of 6484 tested positive for HMPV and 1342 (19.1%) of 7027 tested positive for influenza. Crude rates of 9.8 (95% CI: 8.7-11.0) HMPV and 47.6 (95% CI: 45.1-50.1) influenza-associated ARI hospitalisations were estimated for every 100,000 adult residents annually. The highest rates for both viruses were in those aged 80 years or older, of Maori or Pacific ethnicity, or living in low socioeconomic status (SES) areas. HMPV infections were more common than influenza in those with chronic medical conditions. CONCLUSIONS: Although HMPV infections accounted for fewer hospitalisations than influenza in adults aged 20 years and over, HMPV-associated ARI hospitalisation rates were higher than influenza in older adults, Maori and Pacific people and those of low SES. This highlighted a need for vaccine/antiviral development.

5.
J Infect Dis ; 229(1): 83-94, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37440459

RESUMO

BACKGROUND: Human metapneumovirus (hMPV) epidemiology, clinical characteristics and risk factors for poor outcome after allogeneic stem cell transplantation (allo-HCT) remain a poorly investigated area. METHODS: This retrospective multicenter cohort study examined the epidemiology, clinical characteristics, and risk factors for poor outcomes associated with human metapneumovirus (hMPV) infections in recipients of allo-HCT. RESULTS: We included 428 allo-HCT recipients who developed 438 hMPV infection episodes between January 2012 and January 2019. Most recipients were adults (93%). hMPV infections were diagnosed at a median of 373 days after allo-HCT. The infections were categorized as upper respiratory tract disease (URTD) or lower respiratory tract disease (LRTD), with 60% and 40% of cases, respectively. Patients with hMPV LRTD experienced the infection earlier in the transplant course and had higher rates of lymphopenia, neutropenia, corticosteroid use, and ribavirin therapy. Multivariate analysis identified lymphopenia and corticosteroid use (>30 mg/d) as independent risk factors for LRTD occurrence. The overall mortality at day 30 after hMPV detection was 2% for URTD, 12% for possible LRTD, and 21% for proven LRTD. Lymphopenia was the only independent risk factor associated with day 30 mortality in LRTD cases. CONCLUSIONS: These findings highlight the significance of lymphopenia and corticosteroid use in the development and severity of hMPV infections after allo-HCT, with lymphopenia being a predictor of higher mortality in LRTD cases.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfopenia , Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Adulto , Humanos , Estudos de Coortes , Estudos Retrospectivos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia , Infecções Respiratórias/tratamento farmacológico , Infecções por Paramyxoviridae/epidemiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Corticosteroides/uso terapêutico
6.
Am J Respir Cell Mol Biol ; 71(3): 294-306, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38696270

RESUMO

Respiratory viral infections remain a leading cause of morbidity and mortality. Using a murine model of human metapneumovirus, we identified recruitment of a C1q-expressing inflammatory monocyte population concomitant with viral clearance by adaptive immune cells. Genetic ablation of C1q led to reduced CD8+ T-cell function. Production of C1q by a myeloid lineage was necessary to enhance CD8+ T-cell function. Activated and dividing CD8+ T cells expressed a C1q receptor, gC1qR. Perturbation of gC1qR signaling led to altered CD8+ T-cell IFN-γ production, metabolic capacity, and cell proliferation. Autopsy specimens from fatal respiratory viral infections in children exhibited diffuse production of C1q by an interstitial population. Humans with severe coronavirus disease (COVID-19) infection also exhibited upregulation of gC1qR on activated and rapidly dividing CD8+ T cells. Collectively, these studies implicate C1q production from monocytes as a critical regulator of CD8+ T-cell function following respiratory viral infection.


Assuntos
Linfócitos T CD8-Positivos , Monócitos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Monócitos/imunologia , Monócitos/metabolismo , Humanos , Camundongos , Metapneumovirus/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , COVID-19/metabolismo , Complemento C1q/metabolismo , Complemento C1q/genética , SARS-CoV-2/imunologia , Camundongos Endogâmicos C57BL , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Infecções Respiratórias/patologia , Infecções Respiratórias/metabolismo , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Infecções por Paramyxoviridae/metabolismo
7.
J Virol ; 97(12): e0105223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032197

RESUMO

IMPORTANCE: Human metapneumovirus (hMPV) is a common pathogen causing lower respiratory tract infections worldwide and can develop severe symptoms in high-risk populations such as infants, the elderly, and immunocompromised patients. There are no approved hMPV vaccines or neutralizing antibodies available for therapeutic or prophylactic use. The trimeric hMPV fusion F protein is the major target of neutralizing antibodies in human sera. Understanding the immune recognition of antibodies to hMPV-F antigen will provide critical insights into developing efficacious hMPV monoclonal antibodies and vaccines.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Idoso , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Metapneumovirus/fisiologia , Infecções por Paramyxoviridae/imunologia , Proteínas Virais de Fusão , Vacinas Virais/imunologia
8.
Virol J ; 21(1): 100, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689312

RESUMO

BACKGROUND: In the aftermath of the COVID-19 pandemic, there has been a surge in human metapneumovirus (HMPV) transmission, surpassing pre-epidemic levels. We aim to elucidate the clinical and epidemiological characteristics of HMPV infections in the post-COVID-19 pandemic era. METHODS: In this retrospective single-center study, participants diagnosed with laboratory confirmed HMPV infection through Targeted Next Generation Sequencing were included. The study encompassed individuals admitted to Henan Children's Hospital between April 29 and June 5, 2023. Demographic information, clinical records, and laboratory indicators were analyzed. RESULTS: Between April 29 and June 5, 2023, 96 pediatric patients were identified as infected with HMPV with a median age of 33.5 months (interquartile range, 12 ~ 48 months). The majority (87.5%) of infected children were under 5 years old. Notably, severe cases were statistically younger. Predominant symptoms included fever (81.3%) and cough (92.7%), with wheezing more prevalent in the severe group (56% vs 21.1%). Coinfection with other viruses was observed in 43 patients, with Epstein-Barr virus (EBV) (15.6%) or human rhinovirus A (HRV type A) (12.5%) being the most common. Human respiratory syncytial virus (HRSV) coinfection rate was significantly higher in the severe group (20% vs 1.4%). Bacterial coinfection occurred in 74 patients, with Haemophilus influenzae (Hin) and Streptococcus pneumoniae (SNP) being the most prevalent (52.1% and 41.7%, respectively). Severe patients demonstrated evidence of multi-organ damage. Noteworthy alterations included lower concentration of IL-12p70, decreased lymphocytes percentages, and elevated B lymphocyte percentages in severe cases, with statistical significance. Moreover, most laboratory indicators exhibited significant changes approximately 4 to 5 days after onset. CONCLUSIONS: Our data systemically elucidated the clinical and epidemiological characteristics of pediatric patients with HMPV infection, which might be instructive to policy development for the prevention and control of HMPV infection and might provide important clues for future HMPV research endeavors.


Assuntos
COVID-19 , Metapneumovirus , Infecções por Paramyxoviridae , Humanos , China/epidemiologia , Pré-Escolar , Metapneumovirus/genética , Metapneumovirus/isolamento & purificação , Estudos Retrospectivos , Feminino , Masculino , Lactente , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , COVID-19/epidemiologia , Criança , Coinfecção/epidemiologia , Coinfecção/virologia , SARS-CoV-2/genética
9.
Virol J ; 21(1): 59, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454484

RESUMO

Human metapneumovirus (HMPV) is a newly identified pathogen causing acute respiratory tract infections in young infants worldwide. Since the initial document of HMPV infection in China in 2003, Chinese scientists have made lots of efforts to prevent and control this disease, including developing diagnosis methods, vaccines and antiviral agents against HMPV, as well as conducting epidemiological investigations. However, effective vaccines or special antiviral agents against HMPV are currently not approved, thus developing early diagnosis methods and knowing its epidemiological characteristics will be beneficial for HMPV control. Here, we summarized current research focused on the epidemiological characteristics of HMPV in China and its available detection methods, which will be beneficial to increase the public awareness and disease control in the future.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Vacinas , Lactente , Humanos , Metapneumovirus/genética , Infecções por Paramyxoviridae/diagnóstico , Infecções por Paramyxoviridae/epidemiologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Antivirais , China/epidemiologia
10.
Eur J Clin Microbiol Infect Dis ; 43(7): 1445-1452, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801487

RESUMO

PURPOSE: The objective of this study was to examine the molecular epidemiology and clinical characteristics of HMPV infection among children with ARIs in Nanjing. METHODS: The respiratory samples were collected from 2078 children (≤ 14 years) with acute respiratory infections and were tested for HMPV using real-time RT-PCR. Amplification and sequencing of the HMPV G gene were followed by phylogenetic analysis using MEGA 7.0. RESULT: The detection rate of HMPV among children was 4.7% (97/2078), with a concentration in those under 5 years of age. Notably, the peak season for HMPV prevalence was observed in winter. Among the 97 HMPV-positive samples, 51.5% (50/97) were available for characterization of the HMPV G protein gene. Phylogenetic analysis indicated that the sequenced HMPV strains were classified into three sublineages: A2c111nt - dup (84.0%), B1 (2.0%), and B2 (14.0%). CONCLUSION: There was an incidence of HMPV among hospitalized children during 2021-2022 in Nanjing with A2c111nt - dup being the dominant strain. This study demonstrated the molecular epidemiological characteristics of HMPV among children with respiratory infections in Nanjing, China.


Assuntos
Metapneumovirus , Epidemiologia Molecular , Infecções por Paramyxoviridae , Filogenia , Infecções Respiratórias , Estações do Ano , Humanos , Metapneumovirus/genética , Metapneumovirus/classificação , Metapneumovirus/isolamento & purificação , China/epidemiologia , Pré-Escolar , Criança , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Lactente , Masculino , Feminino , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Adolescente , Incidência , Recém-Nascido , Prevalência , Genótipo
11.
Epidemiol Infect ; 152: e90, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770587

RESUMO

We analyzed data from a community-based acute respiratory illness study involving K-12 students and their families in southcentral Wisconsin and assessed household transmission of two common seasonal respiratory viruses - human metapneumovirus (HMPV) and human coronaviruses OC43 and HKU1 (HCOV). We found secondary infection rates of 12.2% (95% CI: 8.1%-17.4%) and 19.2% (95% CI: 13.8%-25.7%) for HMPV and HCOV, respectively. We performed individual- and family-level regression models and found that HMPV transmission was positively associated age of the index case (individual model: p = .016; family model: p = .004) and HCOV transmission was positively associated with household density (family model: p = .048). We also found that the age of the non-index case was negatively associated with transmission of both HMPV (individual model: p = .049) and HCOV (individual model: p = .041), but we attributed this to selection bias from the original study design. Understanding household transmission of common respiratory viruses like HMPV and HCOV may help to broaden our understanding of the overall disease burden and establish methods to prevent the spread of disease from low- to high-risk populations.


Assuntos
Infecções por Coronavirus , Características da Família , Metapneumovirus , Infecções por Paramyxoviridae , Humanos , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/epidemiologia , Wisconsin/epidemiologia , Feminino , Adulto Jovem , Masculino , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/epidemiologia , Adulto , Adolescente , Criança , Coronavirus , Estações do Ano , Pessoa de Meia-Idade , Pré-Escolar , Infecções Respiratórias/transmissão , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia
12.
Transpl Infect Dis ; 26(1): e14188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37938791

RESUMO

There is increasing recognition that respiratory viral infections such as influenza, respiratory syncytial virus, parainfluenza virus, adenovirus, and SARS-CoV-2 can promote the development of invasive fungal pulmonary coinfections, particularly invasive aspergillosis, both in immunocompetent and immunocompromised patients. To date, there are no case reports exploring the role of human metapneumovirus as a risk factor for fungal coinfection. Below, we describe the case of a 63-year-old woman who received a kidney transplant and developed invasive pulmonary aspergillosis after a human metapneumovirus infection and discuss the possible phenomena that could favor this association.


Assuntos
Aspergilose Pulmonar Invasiva , Metapneumovirus , Transplante de Órgãos , Infecções por Paramyxoviridae , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Feminino , Humanos , Pessoa de Meia-Idade , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Transplantados
13.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985204

RESUMO

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Assuntos
Galinhas , Ouro , Metapneumovirus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Infecções por Paramyxoviridae , Doenças das Aves Domésticas , Sensibilidade e Especificidade , Metapneumovirus/genética , Metapneumovirus/isolamento & purificação , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/economia , Galinhas/virologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economia , Infecções por Paramyxoviridae/diagnóstico , Infecções por Paramyxoviridae/veterinária , Infecções por Paramyxoviridae/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico , Ouro/química , Perus , Nanopartículas Metálicas/química , Limite de Detecção , Colorimetria/métodos , DNA Viral/genética
14.
Adv Exp Med Biol ; 1448: 249-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117819

RESUMO

A wide variety of infections can trigger cytokine storm syndromes including those caused by bacteria, viruses, fungi and parasites. The most frequent viral trigger is Epstein-.Barr virus which is covered in Chapter 16. CSS associated with COVID-19 is also discussed separately (Chapter 22). This chapter will focus on other viruses including the hemorrhagic fever viruses, influenza, parainfluenza, adenovirus, parvovirus, hepatitis viruses, measles, mumps, rubella, enterovirus, parechovirus, rotavirus, human metapneumovirus and human T-lymphotropic virus. The published literature consists of many single case reports and moderate-sized case series reporting CSS, in most circumstances meeting the 2004 diagnostic criteria for hemophagocytic lymphohistiocytosis (HLH). There is no published clinical trial evidence specifically for management of HLH associated with these viruses. In some situations, patients received supportive therapy and blood product transfusions only but in most cases, they were treated with one or more of intravenous corticosteroids, intravenous immunoglobulin and/or etoposide. These were successful in many patients although in significant numbers progression of infection to CSS was associated with mortality.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Humanos , Síndrome da Liberação de Citocina/imunologia , COVID-19/complicações , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/virologia , SARS-CoV-2 , Febres Hemorrágicas Virais/virologia
15.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255903

RESUMO

Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin ß1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metapneumovirus , Humanos , Animais , Gatos , Suínos , Metapneumovirus/genética , Integrina beta1/genética , Galinhas , Anticorpos Antivirais
16.
J Infect Dis ; 227(4): 498-511, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35323906

RESUMO

BACKGROUND: Interactions of Streptococcus pneumoniae with viruses feature in the pathogenesis of numerous respiratory illnesses. METHODS: We undertook a case-control study among adults at Kaiser Permanente Southern California between 2015 and 2019. Case patients had diagnoses of lower respiratory tract infection (LRTI; including pneumonia or nonpneumonia LRTI diagnoses), with viral infections detected by multiplex polymerase chain reaction testing. Controls without LRTI diagnoses were matched to case patients by demographic and clinical attributes. We measured vaccine effectiveness (VE) for 13-valent (PCV13) against virus-associated LRTI by determining the adjusted odds ratio for PCV13 receipt, comparing case patients and controls. RESULTS: Primary analyses included 13 856 case patients with virus-associated LRTI and 227 887 matched controls. Receipt of PCV13 was associated with a VE of 24.9% (95% confidence interval, 18.4%-30.9%) against virus-associated pneumonia and 21.5% (10.9%-30.9%) against other (nonpneumonia) virus-associated LRTIs. We estimated VEs of 26.8% (95% confidence interval, 19.9%-33.1%) and 18.6% (9.3%-27.0%) against all virus-associated LRTI episodes diagnosed in inpatient and outpatient settings, respectively. We identified statistically significant protection against LRTI episodes associated with influenza A and B viruses, endemic human coronaviruses, parainfluenza viruses, human metapneumovirus, and enteroviruses but not respiratory syncytial virus or adenoviruses. CONCLUSIONS: Among adults, PCV13 conferred moderate protection against virus-associated LRTI. The impacts of pneumococcal conjugate vaccines may be mediated, in part, by effects on polymicrobial interactions between pneumococci and respiratory viruses.


Assuntos
Infecções Pneumocócicas , Pneumonia Pneumocócica , Pneumonia , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Humanos , Adulto , Estudos de Casos e Controles , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/prevenção & controle , Streptococcus pneumoniae , Vacinação , Vacinas Conjugadas , Vacinas Pneumocócicas , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Pneumonia Pneumocócica/epidemiologia , Pneumonia Pneumocócica/prevenção & controle
17.
Emerg Infect Dis ; 29(4): 850-852, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878013

RESUMO

We describe an unusual outbreak of respiratory infections caused by human metapneumovirus in children during the sixth wave of COVID-19 in Spain, associated with the Omicron variant. Patients in this outbreak were older than usual and showed more hypoxia and pneumonia, longer length of stay, and greater need for intensive care.


Assuntos
COVID-19 , Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Espanha/epidemiologia , Pandemias , Infecções por Paramyxoviridae/epidemiologia , Infecções Respiratórias/epidemiologia
18.
J Virol ; 96(17): e0072322, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975999

RESUMO

The production of type I interferon (IFN) is the hallmark of the innate immune response. Most, if not all, mammalian viruses have a way to circumvent this response. Fundamental knowledge on viral evasion of innate immune responses may facilitate the design of novel antiviral therapies. To investigate how human metapneumovirus (HMPV) interacts with the innate immune response, recombinant viruses lacking G, short hydrophobic (SH), or M2-2 protein expression were assessed for IFN induction in A549 cells. HMPV lacking G or SH protein expression induced similarly low levels of IFN, compared to the wild-type virus, whereas HMPV lacking M2-2 expression induced significantly more IFN than the wild-type virus. However, sequence analysis of the genomes of M2-2 mutant viruses revealed large numbers of mutations throughout the genome. Over 70% of these nucleotide substitutions were A-to-G and T-to-C mutations, consistent with the properties of the adenosine deaminase acting on RNA (ADAR) protein family. Knockdown of ADAR1 by CRISPR interference confirmed the role of ADAR1 in the editing of M2-2 deletion mutant virus genomes. More importantly, Northern blot analyses revealed the presence of defective interfering RNAs (DIs) in M2-2 mutant viruses and not in the wild-type virus or G and SH deletion mutant viruses. DIs are known to be potent inducers of the IFN response. The presence of DIs in M2-2 mutant virus stocks and hypermutated virus genomes interfere with studies on HMPV and the innate immune response and should be addressed in future studies. IMPORTANCE Understanding the interaction between viruses and the innate immune response is one of the barriers to the design of antiviral therapies. Here, we investigated the role of the G, SH, and M2-2 proteins of HMPV as type I IFN antagonists. In contrast to other studies, no IFN-antagonistic functions could be observed for the G and SH proteins. HMPV with a deletion of the M2-2 protein did induce type I IFN production upon infection of airway epithelial cells. However, during generation of virus stocks, these viruses rapidly accumulated DIs, which are strong activators of the type I IFN response. Additionally, the genomes of these viruses were hypermutated, which was prevented by generating stocks in ADAR knockdown cells, confirming a role for ADAR in hypermutation of HMPV genomes or DIs. These data indicate that a role of the HMPV M2-2 protein as a bona fide IFN antagonist remains elusive.


Assuntos
Imunidade Inata , Interferon Tipo I , Metapneumovirus , Proteínas Virais , Células A549 , Adenosina Desaminase , Antivirais/metabolismo , Humanos , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Metapneumovirus/genética , Metapneumovirus/metabolismo , Proteínas de Ligação a RNA , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
J Med Virol ; 95(12): e29299, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38081792

RESUMO

Following the coronavirus disease 2019 (COVID-19) outbreak in February 2020, incidences of various infectious diseases decreased notably in Hokkaido Prefecture, Japan. However, Japan began gradually easing COVID-19 infection control measures in 2022. Here, we conducted a survey of children hospitalized with human metapneumovirus (hMPV), influenza A and B, and respiratory syncytial virus infections in 18 hospitals across Hokkaido Prefecture, Japan, spanning from July 2019 to June 2023. From March 2020 to June 2022 (28 months), only 13 patients were hospitalized with hMPV, and two patients had influenza A. However, in October to November 2022, there was a re-emergence of hMPV infections, with a maximum of 27 hospitalizations per week. From July 2022 to June 2023 (12 months), the number of hMPV-related hospitalizations dramatically increased to 317 patients, with the majority aged 3-6 years (38.2%, [121/317]). Influenza A also showed an increase from December 2022, with a peak of 13 hospitalizations per week in March 2023, considerably fewer than the pre-COVID-19 outbreak in December 2019, when rates reached 45 hospitalizations per week. These findings suggest the possibility of observing more resurgences in infectious diseases in Japan after 2023 if infection control measures continue to be relaxed. Caution is needed in managing potential outbreaks.


Assuntos
COVID-19 , Doenças Transmissíveis , Influenza Humana , Metapneumovirus , Infecções por Paramyxoviridae , Infecções por Vírus Respiratório Sincicial , Infecções Respiratórias , Criança , Humanos , Lactente , Influenza Humana/epidemiologia , Estações do Ano , Japão/epidemiologia , COVID-19/epidemiologia , Infecções por Paramyxoviridae/epidemiologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções Respiratórias/epidemiologia
20.
Virus Genes ; 59(4): 524-531, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150780

RESUMO

Human metapneumovirus (HMPV) is a major pathogen of acute respiratory tract infections (ARTIs) in children. Whole genome sequence analyses could help understand the evolution and transmission events of this virus. In this study, we sequenced HMPV whole genomes to improve the identification of molecular epidemiology in Beijing, China. Nasopharyngeal aspirates of hospitalized children aged < 14 years old with ARTIs were screened for HMPV infection using qPCR. Fourteen pairs of overlapping primers were used to amplify whole genome sequences of HMPV from positive samples with high viral loads. The epidemiology of HMPV was analysed and 27 HMPV whole genome sequences were obtained. Sequence identity and the positional entropy analyses showed that most regions of HMPV genome are conserved, whereas the G gene contained many variations. Phylogenetic analysis identified 25 HMPV sequences that belonged to a newly defined subtype A2b1; G gene sequences from 24 of these contained a 111-nucleotide duplication. HMPV is an important respiratory pathogen in paediatric patients. The new subtype A2b1 with a 111-nucleotide duplication has become predominate in Beijing, China.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Filogenia , Sequenciamento Completo do Genoma , Metapneumovirus/genética , Evolução Molecular , Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Criança , Adolescente , Infecções por Paramyxoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA