Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 26(14): 4113-4126, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29980364

RESUMO

A novel group of aryl methyl sulfones based on nonsteroidal anti-inflammatory compounds exhibiting a methyl sulfone instead of the acetic or propionic acid group was designed, synthesized and evaluated in vitro for inhibition against the human cyclooxygenase of COX-1 and COX-2 isoenzymes and in vivo for anti-inflammatory activity using the carrageenan induced rat paw edema model in rats. Also, in vitro chemosensitivity and in vivo analgesic and intestinal side effects were determined for defining the therapeutic and safety profile. Molecular modeling assisted the design of compounds and the interpretation of the experimental results. Biological assay results showed that methyl sulfone compounds 2 and 7 were the most potent COX inhibitors of this series and best than the corresponding carboxylic acids (methyl sulfone 2: IC50 COX-1 = 0.04 and COX-2 = 0.10 µM, and naproxen: IC50 COX-1 = 11.3 and COX-2 = 3.36 µM). Interestingly, the inhibitory activity of compound 2 represents a significant improvement compared to that of the parent carboxylic compound, naproxen. Further support to the results were gained by the docking studies which suggested the ability of compound 2 and 7 to bind into COX enzyme with low binding free energies. The improvement of the activity of some sulfones compared to the carboxylic analogues would be performed through a change of the binding mode or mechanism compared to the standard binding mode displayed by ibuprofen, as disclosed by molecular modeling studies. So, this study paves the way for further attention in investigating the participation of these new compounds in the pain inhibitory mechanisms. The most promising compounds 2 and 7 possess a therapeutical profile that enables their chemical scaffolds to be utilized for development of new NSAIDs.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antiulcerosos/farmacologia , Dimetil Sulfóxido/farmacologia , Edema/tratamento farmacológico , Úlcera Gástrica/tratamento farmacológico , Sulfonas/farmacologia , Ácido Acético , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antiulcerosos/síntese química , Antiulcerosos/química , Carragenina , Dimetil Sulfóxido/síntese química , Dimetil Sulfóxido/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Humanos , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química , Termodinâmica
2.
Crit Rev Toxicol ; 45(3): 245-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25629923

RESUMO

Abstract The metabolism of polychlorinated biphenyls (PCBs) is complex and has an impact on toxicity, and thereby on the assessment of PCB risks. A large number of reactive and stable metabolites are formed in the processes of biotransformation in biota in general, and in humans in particular. The aim of this document is to provide an overview of PCB metabolism, and to identify the metabolites of concern and their occurrence. Emphasis is given to mammalian metabolism of PCBs and their hydroxyl, methylsulfonyl, and sulfated metabolites, especially those that persist in human blood. Potential intracellular targets and health risks are also discussed.


Assuntos
Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacocinética , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/farmacocinética , Animais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais/toxicidade , Humanos , Bifenilos Policlorados/sangue , Bifenilos Policlorados/toxicidade
3.
Bioorg Med Chem Lett ; 25(10): 2225-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25881830

RESUMO

The proprotein convertases PCSK8 and PCSK4 are, respectively, the 8th and 4th members of Ca(+2)-dependent serine endoprotease of Proprotein Convertase Subtilisin Kexin (PCSK) super family structurally related to the bacterial subtilisin and yeast kexin. The membrane bound PCSK8 (also called SKI-1 or S1P) is implicated in sterol regulation and lipid synthesis via its role in the maturation of human (h) SREBP-2. It also plays role in cartilage formation, bone mineralization, as well as viral pathogenesis. On the other hand, PCSK4 has been linked to mammalian fertilization and placenta growth. Owing to these findings, interest has grown to develop specific inhibitors against these enzymes for potential biochemical and therapeutic applications. In this study we developed two types of small molecule inhibitors of PCSK8 and PCSK4 and demonstrated their anti-proteolytic activities in vitro cell-free and in vitro cell culture systems. These are isocoumarinyl methyl sulfone derivatives and enediyne amino acid containing peptides. Our in vitro data suggested that one of the 7 sulfone derivatives (methyl phenyl sulfone) inhibited PCSK8 with inhibition constant Ki ∼255µM. It also blocked PCSK8-mediated processing of hSREBP-2 in HepG2 cell in a concentration-dependent manner. However all 7 iso-coumarinyl methyl sulfones inhibited htrypsin with IC50 ranging from 2 to 165µM. In contrast, all our designed enediynyl peptides inhibited PCSK8 and PCSK4 activity with Ki and IC50 in low µM or high nM ranges. All compounds exhibited competitive inhibition as indicated by their enzyme kinetic plots and observed dependence of IC50 value on substrate concentration. Our study confirmed that incorporation at the substrate cleavage site of 'Enediyne amino acid' generates potent inhibitors of PCSK8 and PCSK4. This represents a novel approach for future development of inhibitors of PCSK or other enzymes.


Assuntos
Dimetil Sulfóxido/síntese química , Dimetil Sulfóxido/farmacologia , Desenho de Fármacos , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Pró-Proteína Convertases/antagonistas & inibidores , Sulfonas/síntese química , Sulfonas/farmacologia , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Dimetil Sulfóxido/química , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Oligopeptídeos/química , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA