Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 362: 121305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830287

RESUMO

The use of microalgae and bacteria as a strategy for the startup of bioreactors for the treatment of industrial wastewater can be a sustainable and economically viable alternative. This technology model provides satisfactory results in the nitrification and denitrification process for nitrogen removal, organic matter removal, biomass growth, sedimentation, and byproducts recovery for added-value product production. The objective of this work was to evaluate the performance of microalgae and bacteria in their symbiotic process when used in the treatment of paper pulp industry wastewater. The experiment, lasting fourteen days, utilized four bioreactors with varying concentrations in mgVSS/L of microalgae to bacteria ratio (R1-100:100, R2-100:300, R3-100:500, R4-300:100) in the startup process. Regarding the sludge volumetric index (SVI), the results show that the R1 and R2 reactors developed SVI30/SVI10 biomass in the range of 85.57 ± 7.33% and 84.72 ± 8.19%, respectively. The lipid content in the biomass of reactors R1, R2, R3 e R4 was 13%, 7%, 19%, and 22%, respectively. This high oil content at the end of the batch, may be related to the nutritional stress that the species underwent during this feeding regime. In terms of chlorophyll, the bioreactor with an initial inoculation of 100:100 showed better symbiotic growth of microalgae and bacteria, allowing exponential growth of microalgae. The total chlorophyll value for this bioreactor was 801.46 ± 196.96 µg/L. Biological removal of nitrogen from wastewater from the paper pulp industry is a challenge due to the characteristics of the effluent, but the four reactors operated in a single batch obtained good nitrogen removal. Ammonia nitrogen removal performances were 91.55 ± 9.99%, 72.13 ± 19.18%, 64.04 ± 21.34%, and 86.15 ± 30.10% in R1, R2, R3, and R4, respectively.


Assuntos
Biocombustíveis , Reatores Biológicos , Microalgas , Águas Residuárias , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias/química , Papel , Biomassa , Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Nitrificação
2.
Environ Pollut ; 349: 123864, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554837

RESUMO

The livestock sector is responsible for a significant amount of wastewater globally. The microalgal-bacterial consortium (MBC) treatment has gained increasing attention as it is able to eliminate pollutants to yield value-added microalgal products. This review offers a critical discussion of the source of pollutants from livestock wastewater and the environmental impact of these pollutants. It also discusses the interactions between microalgae and bacteria in treatment systems and natural habitats in detail. The effects on MBC on the removal of various pollutants (conventional and emerging) are highlighted, focusing specifically on analysis of the removal mechanisms. Notably, the various influencing factors are classified into internal, external, and operating factors, and the mutual feedback relationships between them and the target (removal efficiency and biomass) have been thoroughly analysed. Finally, a wastewater recycling treatment model based on MBC is proposed for the construction of a green livestock farm, and the application value of various microalgal products has been analysed. The overall aim was to indicate that the use of MBC can provide cost-effective and eco-friendly approaches for the treatment of livestock wastewater, thereby advancing the path toward a promising microalgal-bacterial-based technology.


Assuntos
Bactérias , Gado , Microalgas , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Animais , Bactérias/metabolismo , Poluentes Químicos da Água/metabolismo , Consórcios Microbianos/fisiologia , Biodegradação Ambiental
3.
Bioresour Technol ; 393: 130172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086464

RESUMO

Hypersaline pickled mustard wastewater (PMW), a typical food wastewater with high nutrient content, was successfully bioremediated via the co-treatment of Chaetoceros muelleri and indigenous bacteria in this study. Chemical oxygen demand, ammonia nitrogen, total nitrogen and total phosphorus in 10 % PMW could be effectively reduced by 82 %, 90 %, 94 % and 96 %, respectively, after 12 days treatment. Oxygen species activities, malondialdehyde content, microalgal biomass, photosynthesis and extracellular polymeric substances were characterized during the treatment to determine the responses of the consortium when exposed to different concentration of PMW. Microbial community analysis demonstrated a significant increase in the relative abundance of Halomonas and Marinobacter in the 10 % PMW after 12 days treatment, which was beneficial for nutrients recycling by the diatoms. Meanwhile, C. muelleri was effective in reducing the relative abundance of potentially pathogenic bacteria Malaciobacter. In conclusion, the work here offers a promising and environmentally friendly approach for hypersaline wastewater treatment.


Assuntos
Diatomáceas , Microalgas , Águas Residuárias , Mostardeira , Nutrientes , Nitrogênio , Fósforo , Biomassa
4.
Water Res ; 239: 120029, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182308

RESUMO

Microalgae-bacteria consortium (MBC) provides an alternative to sustainable treatment of human toilet wastewater (TWW) and resource recovery. This study compared the conventional activated sludge system and wastewater indigenous MBC system (IMBC) for nitrogen removal in TWW through the coupled partial nitrification (PN) and nitrite-type denitrification process. PN was firstly established by alternating FA and FNA. Subsequently, the successful PN maintenance with the nitrite accumulation rate ranging between 90.1-95.3% was achieved using two strategies: light irradiation with the appropriate specific light energy density at 0.0188-0.0598 kJ/mg VSS and the timely nitrite-type denitrification with the algae-secreted organics as the carbon source, eventually resulting in the nitrite accumulation rate ranging between 90.1-95.3%. In the IMBC-PN system, bacterial metabolism contributed to 91.5% of nitrogen removal and the rest was through microalgal assimilation. This study offers a sustainable hybrid IMBC-PN process for high NH4+-N strength wastewater treatment (e.g., TWW), which theoretically saves 23.5% aeration and 34.2% carbon source as well as reduces 17.0% sludge production.


Assuntos
Aparelho Sanitário , Microalgas , Humanos , Águas Residuárias , Nitrificação , Esgotos/microbiologia , Desnitrificação , Nitritos/metabolismo , Microalgas/metabolismo , Reatores Biológicos/microbiologia , Oxirredução , Bactérias/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
5.
Sci Total Environ ; 891: 164489, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279806

RESUMO

The proliferation of antibiotic-resistance genes is a result of the rise in the discharge of residual antibiotics into waterbodies from a variety of sources. Antibiotic removal by microalgae-bacteria consortium has been shown to be effective, therefore, there is a need to understand the involved microbial processes. This review summarizes the microbiological removal mechanisms of antibiotics by the microalgae-bacteria consortium, such as biosorption, bioaccumulation, and biodegradation. Factors that influence antibiotic removal are discussed. Co-metabolism of nutrients and antibiotics in the microalgae-bacteria consortium and the metabolic pathways revealed by omics technologies are also highlighted. Furthermore, the responses of microalgae and bacteria to antibiotic stress are elaborated, including reactive oxidizing species (ROS) generation and its effects on photosynthesis machinery, antibiotic stress tolerance, microbial community shift, and the emergence of antibiotic resistance genes (ARGs). Finally, we offer a prospective solutions for the optimization and applications of microalgae-bacteria symbiotic systems for antibiotic removal.


Assuntos
Antibacterianos , Microalgas , Antibacterianos/farmacologia , Estudos Prospectivos , Bactérias , Fotossíntese
6.
Sci Total Environ ; 838(Pt 1): 155871, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35568165

RESUMO

The diversity of microalgae and bacteria allows them to form a complementary consortium for efficient wastewater treatment and nutrient recovery. This review highlights the potential of wastewater-derived microalgal biomass as a renewable feedstock for producing animal feed, biofertilisers, biofuel, and many valuable biochemicals. Data corroborated from this review shows that microalgae and bacteria can thrive in many environments. Microalgae are especially effective at utilising nutrients from the water as they grow. This review also consolidates the current understanding of microalgae characteristics and their interactions with bacteria in a consortium system. Recent studies on the performance of only microalgae and microalgae-bacteria wastewater treatment are compared and discussed to establish a research roadmap for practical implementation of the consortium systems for various wastewaters (domestic, industrial, agro-industrial, and landfill leachate wastewater). In comparison to the pure microalgae system, the consortium system has a higher removal efficiency of up to 15% and shorter treatment time. Additionally, this review addresses a variety of possibilities for biomass application after wastewater treatment.


Assuntos
Microalgas , Purificação da Água , Animais , Bactérias , Biomassa , Águas Residuárias/microbiologia
7.
Bioresour Technol ; 354: 127203, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462016

RESUMO

Anthropogenic activities have drastically affected the environment, leading to increased waste accumulation in atmospheric bodies, including water. Wastewater treatment is an energy-consuming process and typically requires thousands of kilowatt hours of energy. This enormous energy demand can be fulfilled by utilizing the microbial electrolysis route to breakdown organic pollutants in wastewater which produces clean water and biohydrogen as a by-product of the reaction. Microalgae are the promising microorganism for the biohydrogen production, and it has been investigated that the interaction between microalgae and bacteria can be used to boost the yield of biohydrogen. Consortium of algae and bacteria resulting around 50-60% more biohydrogen production compared to the biohydrogen production of algae and bacteria separately. This review summarises the recent development in different microalgae-bacteria granular consortium systems successfully employed for biohydrogen generation. We also discuss the limitations in biohydrogen production and factors affecting its production from wastewater.


Assuntos
Microalgas , Purificação da Água , Bactérias/metabolismo , Biocombustíveis , Fermentação , Hidrogênio/metabolismo , Microalgas/metabolismo , Águas Residuárias , Água
8.
Bioresour Technol ; 343: 126149, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34673189

RESUMO

Microbial removal of Chlortetracycline (CTC) at low CTC concentrations (in the order of 10-20 mg/L) has been reported. In this study, a novel microalgae-bacteria consortium was developed for effective CTC biodegradation at higher concentrations (up to 80 mg/L). The microalgae-bacteria consortium is resistant to up to 80 mg/L CTC, while the pure microalgal culture could only tolerate 60 mg/L CTC. CTC removal in the initial 12 h was primarily via biosorption by the microalgae-bacteria consortium and the adsorption capacity increased from 61.71 to 102.53 mg/g biomass in 12 h. Further, CTC biodegradation by the microalgae-bacteria consortium was catalyzed by extracellular enzymes secreted under antibiotic stress. The symbiotic bacterial diversity was analyzed by high throughput sequencing. The aerobic bacteria Porphyrobacter and Devosia were the dominant genera in the consortium. In the presence of CTC, a microbial community shift occurred with Chloroptast, Spingopyxis, and Brevundimonas being the dominant genera.


Assuntos
Clortetraciclina , Microalgas , Antibacterianos , Bactérias , Biodegradação Ambiental , Biomassa
9.
Bioresour Technol ; 351: 126964, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35272036

RESUMO

Antibiotics in wastewaters (e.g., sulfonamides (SAs)) are not effectively removed by the conventional bacterial processes. In this study, a microalgae (Scenedesmus obliquus)-based process was evaluated for the removal of SAs. The maximum removal efficiency of sulfadiazine (SDZ) and sulfamethoxazole (SMX) by the consortium was 5.85% and 40.84%, respectively. The lower SDZ biodegradation efficiency could be due to the difference in the lipophilic degree related to cell binding. The presence of SAs did not significantly inhibit the biomass production of the consortium (1311-1952 mg/L biomass) but led to a 36-51% decrease in total polysaccharide content and an increase in microalgae's protein content, which caused granule formation. The presence of SMX and SDZ resulted in an increase in lipid peroxidation activity with a 6.2 and 23.5-fold increase in malondialdehyde content, respectively. Rhodobacter and Phreatobacter were abundant in the consortium with SAs' presence, while alinarimonas, Catalinimonas and Cecembia were seen in their absence.


Assuntos
Poluentes Ambientais , Microalgas , Bactérias , Biodegradação Ambiental , Sulfadiazina , Sulfametoxazol , Sulfanilamida , Sulfonamidas
10.
Bioresour Technol ; 365: 128119, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252751

RESUMO

This study aimed at developing an eco-friendly and effective treatment for swine wastewater (SWW) using a designer microalgae-bacteria consortium. A functional algal bacterial consortium was developed with SWW-derived bacteria and Chlorella sorokiniana AK-1. Light intensity (300 µmol/m2/s) and inoculum size (0.15 and 0.2 g/L for microalgae and bacteria) were optimized. Semi-batch operation treating 50 % SWW resulted in a COD, BOD, TN, and TP removal efficiency of 81.1 ± 0.9 %, 97.0 ± 0.7 %, 90.6 ± 1.6 % and 91.3 ± 1.1 %, respectively. A novel two-stage process with an initial bacterial start-up stage followed by microalgal inoculation was applied for attaining stable organic carbon removal, in addition to satisfactory TN and TP removal. Full strength SWW was treated with this strategy with COD, BOD, TN, and TP removal efficiencies of 72.1 %, 94.9 %, 88 %, and 94.6 %, respectively. The biomass consisted of 36 % carbohydrates, indicating a potential feedstock for biochar production. In addition, the effluent met the standards for effluent discharge in Taiwan.


Assuntos
Chlorella , Microalgas , Suínos , Animais , Águas Residuárias , Biomassa , Bactérias
11.
Chemosphere ; 291(Pt 1): 132717, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34757051

RESUMO

Hydrogen as a clean energy that is conducive to energy and environmental sustainability, playing a significant role in the alleviation of global climate change and energy crisis. Biohydrogen generation from microalgae has been reported as a highly attractive approach that can produce a benign clean energy carrier to achieve carbon neutrality and bioenergy sustainability. Thus, this review explored the mechanism of biohydrogen production from microalgae containing direct biophotolysis, indirect biophotolysis, photo fermentation, and dark fermentation. In general, dark fermentation of microalgae for biohydrogen production is relatively better than photo fermentation, biophotolysis, and microbial electrolysis, because it is able to consecutively generate hydrogen and is not reliant on energy supplied by natural sunlight. Besides, this review summarized potential algal strains for hydrogen production focusing on green microalgae and cyanobacteria. Moreover, a thorough review process was conducted to present hydrogen-producing enzymes targeting biosynthesis and localization of enzymes in microalgae. Notably, the most powerful hydrogen-producing enzymes are [Fe-Fe]-hydrogenases, which have an activity nearly 10-100 times better than [Ni-Fe]-hydrogenases and 1000 times better than nitrogenases. In addition, this work highlighted the major factors affecting low energy conversion efficiency and oxygen sensitivity of hydrogen-producing enzymes. Noting that the most practical pathway of biohydrogen generation was sulfur-deprivation compared with phosphorus, nitrogen, and magnesium deficiency. Further discussions in this work summarized the recent advancement in biohydrogen production from microalgae such as genetic engineering, microalgae-bacteria consortium, electro-bio-hydrogenation, and nanomaterials for developing enzyme stability and hydrolytic efficiency. More importantly, this review provided a summary of current limitations and future perspectives on the sustainable production of biohydrogen from microalgae.


Assuntos
Cianobactérias , Microalgas , Biocombustíveis , Fermentação , Hidrogênio/análise
12.
Bioresour Technol ; 358: 127431, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35671911

RESUMO

Both co-cultivation and co-substrate addition strategies have exhibited massive potential in microalgae-based antibiotic bioremediation. In this study, glucose and sodium acetate were employed as co-substrate in the cultivation of microalgae-bacteria consortium for enhanced sulfadiazine (SDZ) and sulfamethoxazole (SMX) removal. Glucose demonstrated a two-fold increase in biomass production with a maximum specific growth rate of 0.63 ± 0.01 d-1 compared with sodium acetate. The supplementation of co-substrate enhanced the degradation of SDZ significantly up to 703 ± 18% for sodium acetate and 290 ± 22% for glucose, but had almost no effect on SMX. The activities of antioxidant enzymes, including peroxidase, superoxide dismutase and catalase decreased with co-substrate supplementation. Chlorophyll a was associated with protection against sulfonamides and chlorophyll b might contribute to SDZ degradation. The addition of co-substrates influenced bacterial community structure greatly. Glucose enhanced the relative abundance of Proteobacteria, while sodium acetate improved the relative abundance of Bacteroidetes significantly.


Assuntos
Microalgas , Bactérias , Clorofila A/metabolismo , Suplementos Nutricionais , Glucose/metabolismo , Microalgas/metabolismo , Acetato de Sódio/metabolismo , Acetato de Sódio/farmacologia , Sulfadiazina/metabolismo , Sulfametoxazol/metabolismo , Sulfanilamida/metabolismo , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia
13.
Bioresour Technol ; 363: 127916, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087656

RESUMO

Microalgal-bacterial consortium (MBC) constitutes a sustainable and efficient alternative to the conventional activated sludge process for wastewater treatment (WWT). Recently, integrating the MBC process with nitritation (i.e., shortcut MBC) has been proposed to achieve added benefits of reduced carbon and aeration requirements. In the shortcut MBC system, nitrite or free nitrous acid (FNA) accumulation exerts antimicrobial influences that disrupt the stable process performance. In this review, the formation and interactions that influence the performance of the MBC were firstly summarized. Then the influence of FNA on microalgal and bacterial monocultures and related mechanisms together with the knowledge gaps of FNA influence on the shortcut MBC were highlighted. Other challenges and future perspectives that impact the scale-up of the shortcut MBC for WWT were illustrated. A potential roadmap is proposed on how to maximize the stable operation of the shortcut MBC system for sustainable WWT and high-value biomass production.


Assuntos
Microalgas , Ácido Nitroso , Bactérias , Reatores Biológicos , Carbono , Nitritos , Ácido Nitroso/farmacologia , Esgotos/microbiologia , Águas Residuárias
14.
Chemosphere ; 308(Pt 2): 136184, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36030947

RESUMO

The dissolved oxygen (DO) concentration in water streams is one of the most important and critical quality parameters in aquaculture farms. The main objective of this study was to evaluate the potential of two Continuous Flow Granular Reactors, one based on Partial Nitrification-Anammox biomass (Aquammox CFGR) and the other on Microalgae-Bacteria biomass (AquaMab CFGR), for improving dissolved oxygen availability in the recirculation aquaculture systems (RAS). Both reactors treated the extremely low-strength effluents from a freshwater trout farm (1.39 mg NH4+-N/L and 7.7 mg TOC/L). The Aquammox CFGR, removed up to 68% and 100% of ammonium and nitrite, respectively, but the DO concentration in the effluent was below 1 mg O2/L while the anammox activity was not maintained. In the AquaMab CFGR, bioaugmentation of aerobic granules with microalgae was attained, producing an effluent with DO concentrations up to 9 mg O2/L and removed up to 77% and 80% of ammonium and nitrite, respectively, which is expected to reduce the aeration costs in fish farms.


Assuntos
Compostos de Amônio , Microalgas , Oxidação Anaeróbia da Amônia , Aquicultura , Bactérias , Biomassa , Reatores Biológicos/microbiologia , Nitritos , Nitrogênio , Oxirredução , Oxigênio , Rios , Esgotos/microbiologia , Água
15.
Chemosphere ; 284: 131271, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34182290

RESUMO

The effects of water depth, operational and environmental conditions on bacterial communities were analyzed in microalgal-bacterial outdoor photobioreactors treating urban wastewaters from March to August 2014. Three raceway photobioreactors inoculated with Scenedesmus sp. and with different water depths (20, 12, and 5 cm) were used at different dilution rates (0.15, 0.3, 0.4, and 0.5 d-1). A thin-layer reactor with 2 cm water depth and operated at 0.3 d-1 was used as a control. The results showed that biomass productivity increased as water depth decreased. The highest biomass productivity was 0.196 gL-1d-1, 0.245 gL-1d-1, and 0.457 gL-1d-1 for 20, 12, and 5 cm depth raceway photobioreactors, respectively. These values were lower than the maximum productivity registered in the control reactor (1.59 gL-1d-1). Bacterial communities, analyzed by high-throughput 16S rRNA sequencing, were not affected by water depth. A decrease in community evenness was related to a decrease in nutrient removal. Hetetrotrophs and phototrophs, mainly from the family Rhodobacteraceae, dominated bacterial diversity. The community changed due to increasing temperatures, irradiance, and organic carbon, ammonia, and phosphate contents in the photobioreactor-influent as well as, microalgae inhibition and higher organic carbon in the effluent. The photobioreactors shared a core-biome that contained five clusters of co-occurring microorganisms. The bacteria from the different clusters were taxonomically and ecologically different but functionally redundant. Overall, the drivers of the community changes could be related to abiotic variables and complex biological interactions, likely mediated by microalgae excretion of organic substances and the microorganisms' competence for substrates.


Assuntos
Microalgas , Purificação da Água , Bactérias/genética , Biomassa , Fotobiorreatores , RNA Ribossômico 16S/genética , Águas Residuárias/análise
16.
Bioresour Technol ; 274: 232-243, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30513411

RESUMO

This paper addresses the efficiency of a microalgae-based agricultural digestate treatment at pilot-scale in an outdoor raceway pond (880 L, pH-dependent CO2 dosage) and in a bubble column (74.5 L, air-bubbling). Specifically, nitrogen removal, evolution of the algae-bacteria consortium, and the actual process applicability in the Po Valley climate are discussed. The performance of the two reactors varied seasonally. The average algal productivity in the raceway was 32.4 ±â€¯33.1 mg TSS·L-1·d-1 (8.2 ±â€¯8.5 g TSS·m-2·d-1) while in the PBR it was 25.6 ±â€¯26.8 mg TSS·L-1·d-1; the average nitrogen removal was 20 ±â€¯29% (maximum 78%) and 22 ±â€¯29% (maximum 71%) in the raceway and in the column, respectively. Nevertheless, nitrification had a key role as 61 ±â€¯24% and 52 ±â€¯32% of the nitrogen load was oxidized in the raceway and in the column, respectively.


Assuntos
Bactérias , Microalgas , Biomassa , Clima , Nitrificação , Nitrogênio/metabolismo , Lagoas/microbiologia
17.
Bioresour Technol ; 267: 657-665, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30059946

RESUMO

Adoption of microalgae-sourced products depends on the economic feasibility. In the case of fatty acids, it is crucial to obtain high lipid yield, especially in the form of storage lipids (TAGs). However, the production of these lipids often comes into competition with the microalgae biomass, resulting in a decrease in growth. A microalgae culture integration project was conducted in an industrial park in Canada in order to cultivate microalgae from park's wastewaters and then obtain products from the biomass. Different deficiencies and stresses were tested to evaluate what condition allowed the induction of the highest lipids accumulation without compromising the growth of microalgae. The results showed that the medium controlled to pH 7.0 allowed reaching the largest amount of extracted lipids (28 ±â€¯4.3%). Companies involved in this project could be able to make significant savings by the reduced wastewater treatment costs and by not adding expensive nutrients in culture.


Assuntos
Lipídeos/biossíntese , Microalgas , Águas Residuárias , Bactérias , Biocombustíveis , Biomassa , Canadá
18.
Bioresour Technol ; 238: 389-398, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28456047

RESUMO

The performance of a full-scale photobioreactor (PBR) for the treatment of olive washing water (OWW) was evaluated under different HRTs (5-2days). The system was able to treat up to 3926L OWWday-1, and consisted of an activated-carbon pretreatment column and a tubular PBR unit (80 tubes, 98.17L volume, 2-m height, 0.25m diameter). PBR was an effective and environmentally friendly method for the removal of phenols, COD, BOD5, turbidity and color from OWW (average efficiencies 94.84±0.55%, 85.86±1.24%, 99.12±0.17%, 95.86±0.98% and 87.24±0.91%, respectively). The diversity of total bacteria and microalgae in the PBR was analyzed using Illumina-sequencing, evaluating the efficiency of two DNA extraction methods. A stable microalgae-bacteria consortium was developed throughout the whole experimentation period, regardless of changes in HRT, temperature or solar radiation. MDS analyses revealed that the interplay between green algae (Sphaeropleales), cyanobacteria (Hapalosiphon) and Proteobacteria (Rhodopseudomonas, Azotobacter) played important roles in OWW bioremediation.


Assuntos
Microalgas , Olea , Fotobiorreatores , Bactérias , Biodegradação Ambiental
19.
Bioresour Technol ; 156: 322-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24525217

RESUMO

The characteristics of cultivating high-density microalgae-bacteria consortium with landfill leachate was tested in this study. Landfill leachate was collected from Laogang landfill operated for over 10 years in Shanghai, China. The maximum biomass concentration of 1.58g L(-1) and chlorophyll a level of 22mg L(-1) were obtained in 10% leachate spike ratio. Meanwhile, up to 90% of the total nitrogen in landfill leachate was removed in culture with 10% leachate spike ratio with a total nitrogen concentration of 221.6mg L(-1). The fluorescence peak of humic-like organic matters red shifted to longer wavelengths by the end of culture, indicating that microalgae-bacteria consortium was effective for treating landfill leachate contaminants. Furthermore, with the leachate spike ratio of 10%, the maximum lipid productivity and carbon fixation were 24.1 and 65.8mg L(-1)d(-1), respectively. Results of this research provide valuable information for optimizing microalgae culture in landfill leachate.


Assuntos
Bactérias/crescimento & desenvolvimento , Ciclo do Carbono/efeitos dos fármacos , Lipídeos/biossíntese , Microalgas/crescimento & desenvolvimento , Consórcios Microbianos , Poluentes Químicos da Água/farmacologia , Amônia/análise , Bactérias/efeitos dos fármacos , Técnicas de Cultura Celular por Lotes , China , Microalgas/efeitos dos fármacos , Nitrogênio/análise , Nitrogênio/isolamento & purificação , Compostos Orgânicos/análise , Fósforo/isolamento & purificação , Espectrometria de Fluorescência , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação
20.
Bioresour Technol ; 146: 400-407, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23948276

RESUMO

Microalgae have great potential as alternative productive platforms for sustainable production of bioenergy, food, feed and other commodities. Process optimization to realize the claimed potential often comprises strains selection and improvement and also developing of more efficient cultivation, harvesting and downstream processing technology. In this work we show that inoculation with the bacterium Rhizobium strain 10II resulted in increments of up to 30% in chlorophyll, biomass and lipids accumulation of the oleaginous microalgae Ankistrodesmus sp. strain SP2-15. Inoculated cultures have reached a high lipid productivity of up to 112 mg L(-1) d(-1) after optimization. The resulting biomass presented significant levels of Ω3 fatty acids including stearidonic acid, suggesting potential as an alternative land-based source of essential fatty acids.


Assuntos
Biocombustíveis , Biomassa , Clorófitas/metabolismo , Microalgas/metabolismo , Consórcios Microbianos , Rhizobium/metabolismo , Clorofila/química , Clorofila/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Lipídeos/química , Fotobiorreatores , Filogenia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA