RESUMO
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information: The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
RESUMO
Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12 Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.
Assuntos
Ácido Fólico/metabolismo , Halomonas/metabolismo , Metionina/metabolismo , Ubiquinona/metabolismo , Vitamina B 12/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Fenômenos Bioquímicos/efeitos da radiação , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Halomonas/genética , Ligação Proteica/efeitos da radiação , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Raios Ultravioleta , Vitamina B 12/químicaRESUMO
OBJECTIVES: To synthesize a novel antibacterial orthodontic elastomeric ligature incorporating dimethylaminohexadecyl methacrylate (DMAHDM) for the first time to prevent enamel demineralization during orthodontic therapy. METHODS: Various mass fractions of DMAHDM (ranging from 0 % to 20 %) were grafted onto commercial elastomeric ligatures using an ultraviolet photochemical grafting method and were characterized. The optimal DMAHDM concentration was determined based on biocompatibility and mechanical properties, and the antibacterial efficacy was evaluated in a whole-plaque biofilm model. TaqMan real-time polymerase chain reaction and fluorescence in situ hybridization were used to assess the microbial regulatory ability of the multispecies biofilms. Furthermore, an in vitro tooth demineralization model was established to explore its preventive effects on enamel demineralization. Statistical analysis involved a one-way analysis of variance and LSD post hoc tests at a significance level of 0.05. RESULTS: The elastomeric ligature containing 2 % mass fraction of DMAHDM exhibited excellent mechanical properties, favorable biocompatibility, and the most effective antibacterial ability against microorganisms, which decreased by almost two logarithms (P < 0.05). It significantly reduced the proportion of Streptococcus mutans in the multispecies plaque biofilm by 25 % at 72 h, leading to an enhanced biofilm microenvironment. Moreover, the novel elastomeric ligature demonstrated an obvious preventive effect on enamel demineralization, with an elastic modulus 30 % higher and hardness 62 % higher than those of the control group within 3 months (P < 0.05). SIGNIFICANCE: The integration of DMAHDM with an elastomeric ligature holds significant promise for regulating biofilms and preventing enamel demineralization in orthodontic applications.
Assuntos
Antibacterianos , Biofilmes , Elastômeros , Metacrilatos , Desmineralização do Dente , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Desmineralização do Dente/prevenção & controle , Metacrilatos/farmacologia , Teste de Materiais , Aparelhos Ortodônticos/microbiologia , Técnicas In Vitro , Streptococcus mutans/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Placa Dentária/microbiologia , Placa Dentária/prevenção & controle , Esmalte Dentário/efeitos dos fármacosRESUMO
Accumulation and enrichment of excessive heavy metals due to industrialization and modernization not only devastate our ecosystem, but also pose a threat to the global vegetation, especially crops. To improve plant resilience against heavy metal stress (HMS), numerous exogenous substances (ESs) have been tried as the alleviating agents. After a careful and thorough review of over 150 recently published literature, 93 reported ESs and their corresponding effects on alleviating HMS, we propose that 7 underlying mechanisms of ESs be categorized in plants for: 1) improving the capacity of the antioxidant system, 2) inducing the synthesis of osmoregulatory substances, 3) enhancing the photochemical system, 4) detouring the accumulation and migration of heavy metals, 5) regulating the secretion of endogenous hormones, 6) modulating gene expressions, and 7) participating in microbe-involved regulations. Recent research advances strongly indicate that ESs have proven to be effective in mitigating a potential negative impact of HMS on crops and other plants, but not enough to ultimately solve the devastating problem associated with excessive heavy metals. Therefore, much more research should be focused and carried out to eliminate HMS for the sustainable agriculture and clean environmental through minimizing towards prohibiting heavy metals from entering our ecosystem, phytodetoxicating polluted landscapes, retrieving heavy metals from detoxicating plants or crop, breeding for more tolerant cultivars for both high yield and tolerance against HMS, and seeking synergetic effect of multiply ESs on HMS alleviation in our feature researches.
Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Poluentes do Solo/análise , Melhoramento Vegetal , Metais Pesados/análise , Produtos Agrícolas/metabolismo , Solo/químicaRESUMO
Ramie is an ideal crop for remediation of cadmium (Cd) contaminated soil. However, there is a lack of rapid and effective evaluation system for Cd tolerance of ramie germplasms, and also a lack of systematic and in-depth research under Cd contaminated field conditions. This study innovatively developed a rapid screening system of "hydroponics-pot planting", and 196 core germplasms were used to quickly and effectively identify their Cd tolerance and Cd enrichment capacity. Then, two excellent varieties were selected to carry out a 4 years of field experiment under Cd contaminated field to study the remediation model, evaluation of reuse after repair and the mechanism of microbial regulation. The results showed that ramie adopted the cycle mode of "Absorption-activating soil Cd-Migration-Absorption" to remediate on Cd contaminated field, and the application of ramie for remediation had good ecological and economic benefits. Ten dominant genera such as Pseudonocardiales, as well as the key functional genes (mdtC, mdtB, mdtB/yegN, actR, rpoS, and ABA transporter gene) in rhizosphere soil, were identified to participate in activating Cd in rhizosphere soil and promoting ramie to enrich Cd. This study provides a technical route and practical production experience for the research field of phytoremediation of heavy metal pollution.
Assuntos
Boehmeria , Metais Pesados , Poluentes do Solo , Cádmio , Biodegradação Ambiental , SoloRESUMO
Gorgonian corals possess many novel natural products that could potentially mediate coral-bacterial interactions. Since many bacteria use quorum sensing (QS) signals to facilitate colonization of host organisms, regulation of prokaryotic cell-to-cell communication may represent an important bacterial control mechanism. In the present study, we examined extracts of twelve species of Caribbean gorgonian corals, for mechanisms that regulate microbial colonization, such as antibacterial activity and QS regulatory activity. Ethanol extracts of gorgonians collected from Puerto Rico and the Florida Keys showed a range of both antibacterial and QS activities using a specific Pseudomonas aeruginosa QS reporter, sensitive to long chain AHLs and a short chain N-acylhomoserine lactones (AHL) biosensor, Chromobacterium violaceium. Overall, the gorgonian corals had higher antimicrobial activity against non-marine strains when compared to marine strains. Pseudopterogorgia americana, Pseusopterogorgia acerosa, and Pseudoplexuara flexuosa had the highest QS inhibitory effect. Interestingly, Pseudoplexuara porosa extracts stimulated QS activity with a striking 17-fold increase in signal. The stimulation of QS by P. porosa or other elements of the holobiont may encourage colonization or recruitment of specific microbial species. Overall, these results suggest the presence of novel stimulatory QS, inhibitory QS and bactericidal compounds in gorgonian corals. A better understanding of these compounds may reveal insight into coral-microbial ecology and whether a therapeutic potential exists.
Assuntos
Antozoários/química , Antozoários/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Animais , Comunicação Celular/efeitos dos fármacos , Florida , Porto RicoRESUMO
Treatments targeted for gut microbial regulation are newly developed strategies in constipation management. In this study, the alleviating effects of gut micro-ecologically regulatory treatments on constipation in mice were investigated. Male BALB/c mice were treated with loperamide to induce constipation, and then the corresponding intervention was administered in each group, respectively. The results showed that administration of mixed probiotics (MP), a 5-fold dose of postbiotics (P5), both synbiotics (S and S2), as well as mixed probiotics and postbiotics (MPP) blend for 8 days shortened the time to the first black stool, raised fecal water content, promoted intestinal motility, and increased serum motilin level in loperamide-treated mice. Furthermore, these treatments altered gut microbial composition and metabolism of short-chain fatty acids (SCFA). Based on linear regression analysis, SCFA was positively correlated with serum motilin except for isobutyrate. It suggested gut microbial metabolites affected secretion of motilin to increase gastrointestinal movement and transportation function and thus improved pathological symptoms of mice with constipation. In conclusion, the alteration of gut micro-ecology is closely associated with gastrointestinal function, and it is an effective way to improve constipation via probiotic, prebiotic, and postbiotic treatment.
RESUMO
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
RESUMO
Many marine habitats, such as the surface and tissues of marine invertebrates, including corals, harbour diverse populations of microorganisms, which are thought to play a role in the health of their hosts and influence mutualistic and competitive interactions. Investigating the presence and stability of quorum sensing (QS) in these ecosystems may shed light on the roles and control of these bacterial communities. Samples of 13 cnidarian species were screened for the presence and diversity of N-acyl-homoserine lactones (AHLs; a prevalent type of QS molecule) using thin-layer chromatography and an Agrobacterium tumefaciens NTL4 biosensor. Ten of 13 were found to harbour species-specific, conserved AHL profiles. AHLs were confirmed in Anemonia viridis using liquid chromatography tandem mass spectrometry. To assess temporal role and stability, AHLs were investigated in A. viridis from intertidal pools over 16 h. Patterns of AHLs showed conserved profiles except for two mid-chain length AHLs, which increased significantly over the day, peaking at 20:00, but had no correlation with pool chemistry. Denaturing gel electrophoresis of RT-PCR-amplified bacterial 16S rRNA showed the presence of an active bacterial community that changed in composition alongside AHL profiles and contained a number of bands that affiliate with known AHL-producing bacteria. Investigations into the quorum sensing-controlled, species-specific roles of these bacterial communities and how these regulatory circuits are influenced by the coral host and members of the bacterial community are imperative to expand our knowledge of these interactions with respect to the maintenance of coral health.