Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
Cell ; 181(2): 396-409.e26, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32220308

RESUMO

Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.


Assuntos
Lobo Frontal/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Adulto , Mapeamento Encefálico , Lobo Frontal/anatomia & histologia , Corpo Humano , Humanos , Córtex Motor/metabolismo , Movimento/fisiologia
2.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955660

RESUMO

The awake cortex is characterized by a higher level of ongoing spontaneous activity, but it has a better detectability of weak sensory inputs than the anesthetized cortex. However, the computational mechanism underlying this paradoxical nature of awake neuronal activity remains to be elucidated. Here, we propose a hypothetical stochastic resonance, which improves the signal-to-noise ratio (SNR) of weak sensory inputs through nonlinear relations between ongoing spontaneous activities and sensory-evoked activities. Prestimulus and tone-evoked activities were investigated via in vivo extracellular recording with a dense microelectrode array covering the entire auditory cortex in rats in both awake and anesthetized states. We found that tone-evoked activities increased supralinearly with the prestimulus activity level in the awake state and that the SNR of weak stimulus representation was optimized at an intermediate level of prestimulus ongoing activity. Furthermore, the temporally intermittent firing pattern, but not the trial-by-trial reliability or the fluctuation of local field potential, was identified as a relevant factor for SNR improvement. Since ongoing activity differs among neurons, hypothetical stochastic resonance or "sparse network stochastic resonance" might offer beneficial SNR improvement at the single-neuron level, which is compatible with the sparse representation in the sensory cortex.


Assuntos
Córtex Auditivo , Ratos , Animais , Córtex Auditivo/fisiologia , Vigília/fisiologia , Reprodutibilidade dos Testes , Neurônios/fisiologia , Vibração
3.
J Neurochem ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001671

RESUMO

Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the adult brain that binds to GABA receptors and hyperpolarizes the postsynaptic neuron. Gabazine acts as a competitive antagonist to type A GABA receptors (GABAAR), thereby causing diminished neuronal hyperpolarization and GABAAR-mediated inhibition. However, the biochemical effects and the potential regulatory role of astrocytes in this process remain poorly understood. To address this, we investigated the neuronal responses of gabazine in rat cortical cultures containing varying ratios of neurons and astrocytes. Electrophysiological characterization was performed utilizing microelectrode arrays (MEAs) with topologically controlled microcircuit cultures that enabled control of neuronal network growth. Biochemical analysis of the cultures was performed using traditional dissociated cultures on coverslips. Our study indicates that, upon gabazine stimulation, astrocyte-rich neuronal cultures exhibit elevated electrophysiological activity and tyrosine phosphorylation of tropomyosin receptor kinase B (TrkB; receptor for brain-derived neurotrophic factor), along with distinct cytokine secretion profiles. Notably, neurons lacking proper astrocytic support were found to experience synapse loss and decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, astrocytes contributed to neuronal viability, morphology, vascular endothelial growth factor (VEGF) secretion, and overall neuronal network functionality, highlighting the multifunctional role of astrocytes.

4.
Am J Physiol Heart Circ Physiol ; 327(1): H12-H27, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727253

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are frequently used for preclinical cardiotoxicity testing and remain an important tool for confirming model-based predictions of drug effects in accordance with the comprehensive in vitro proarrhythmia assay (CiPA). Despite the considerable benefits hiPSC-CMs provide, concerns surrounding experimental reproducibility have emerged. We investigated the effects of temporal changes and experimental parameters on hiPSC-CM electrophysiology. iCell cardiomyocytes2 were cultured and biosignals were acquired using a microelectrode array (MEA) system (2-14 days). Continuous recordings revealed a 22.6% increase in the beating rate and 7.7% decrease in the field potential duration (FPD) during a 20-min equilibration period. Location-specific differences across a multiwell plate were also observed, with iCell cardiomyocytes2 in the outer rows beating 8.8 beats/min faster than the inner rows. Cardiac endpoints were also impacted by cell culture duration; from 2 to 14 days, the beating rate decreased (-12.7 beats/min), FPD lengthened (+257 ms), and spike amplitude increased (+3.3 mV). Cell culture duration (4-10 days) also impacted cardiomyocyte drug responsiveness (E-4031, nifedipine, isoproterenol). qRT-PCR results suggest that daily variations in cardiac metrics may be linked to the continued maturation of hiPSC-CMs in culture (2-30 days). Daily experiments were also repeated using a second cell line (Cor.4U). Collectively, our study highlights multiple sources of variability to consider and address when performing hiPSC-CM MEA studies. To improve reproducibility and data interpretation, MEA-based studies should establish a standardized protocol and report key experimental conditions (e.g., cell line, culture time, equilibration time, electrical stimulation settings, and raw data values).NEW & NOTEWORTHY We demonstrate that iCell cardiomyocytes2 electrophysiology measurements are impacted by deviations in experimental techniques including electrical stimulation protocols, equilibration time, well-to-well variability, and length of hiPSC-CM culture. Furthermore, our results indicate that hiPSC-CM drug responsiveness changes within the first 2 wk following defrost.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Reprodutibilidade dos Testes , Fatores de Tempo , Potenciais de Ação/efeitos dos fármacos , Células Cultivadas , Isoproterenol/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Microeletrodos , Linhagem Celular , Cardiotoxicidade
5.
Small ; 20(33): e2311274, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511575

RESUMO

Preclinical drug screening for cardiac toxicity has traditionally relied on observing changes in cardiomyocytes' electrical activity, primarily through invasive patch clamp techniques or non-invasive microelectrode arrays (MEA). However, relying solely on field potential duration (FPD) measurements for electrophysiological assessment can miss the full spectrum of drug-induced toxicity, as different drugs affect cardiomyocytes through various mechanisms. A more comprehensive approach, combining field potential and contractility measurements, is essential for accurate toxicity profiling, particularly for drugs targeting contractile proteins without affecting electrophysiology. However, previously proposed platform has significant limitations in terms of simultaneous measurement. The novel platform addresses these issues, offering enhanced, non-invasive evaluation of drug-induced cardiotoxicity. It features eight cantilevers with patterned strain sensors and MEA, enabling real-time monitoring of both cardiomyocyte contraction force and field potential. This system can detect minimum cardiac contraction force of ≈2 µN and field potential signals with 50 µm MEA diameter, using the same cardiomyocytes in measurements of two parameters. Testing with six drugs of varied mechanisms of action, the platform successfully identifies these mechanisms and accurately assesses toxicity profiles, including drugs not inhibiting potassium channels. This innovative approach presents a comprehensive, non-invasive method for cardiac function assessment, poised to revolutionize preclinical cardiotoxicity screening.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Polímeros , Miócitos Cardíacos/efeitos dos fármacos , Animais , Polímeros/química , Microeletrodos , Avaliação Pré-Clínica de Medicamentos/métodos , Contração Miocárdica/efeitos dos fármacos , Ratos
6.
BMC Neurosci ; 25(1): 29, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926677

RESUMO

BACKGROUND: Astrocytes are the most abundant cell type of the central nervous system and are fundamentally involved in homeostasis, neuroprotection, and synaptic plasticity. This regulatory function of astrocytes on their neighboring cells in the healthy brain is subject of current research. In the ischemic brain we assume disease specific differences in astrocytic acting. The renin-angiotensin-aldosterone system regulates arterial blood pressure through endothelial cells and perivascular musculature. Moreover, astrocytes express angiotensin II type 1 and 2 receptors. However, their role in astrocytic function has not yet been fully elucidated. We hypothesized that the angiotensin II receptors impact astrocyte function as revealed in an in vitro system mimicking cerebral ischemia. Astrocytes derived from neonatal wistar rats were exposed to telmisartan (angiotensin II type 1 receptor-blocker) or PD123319 (angiotensin II type 2 receptor-blocker) under normal conditions (control) or deprivation from oxygen and glucose. Conditioned medium (CM) of astrocytes was harvested to elucidate astrocyte-mediated indirect effects on microglia and cortical neurons. RESULT: The blockade of angiotensin II type 1 receptor by telmisartan increased the survival of astrocytes during ischemic conditions in vitro without affecting their proliferation rate or disturbing their expression of S100A10, a marker of activation. The inhibition of the angiotensin II type 2 receptor pathway by PD123319 resulted in both increased expression of S100A10 and proliferation rate. The CM of telmisartan-treated astrocytes reduced the expression of pro-inflammatory mediators with simultaneous increase of anti-inflammatory markers in microglia. Increased neuronal activity was observed after treatment of neurons with CM of telmisartan- as well as PD123319-stimulated astrocytes. CONCLUSION: Data show that angiotensin II receptors have functional relevance for astrocytes that differs in healthy and ischemic conditions and effects surrounding microglia and neuronal activity via secretory signals. Above that, this work emphasizes the strong interference of the different cells in the CNS and that targeting astrocytes might serve as a therapeutic strategy to influence the acting of glia-neuronal network in de- and regenerative context.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II , Bloqueadores do Receptor Tipo 2 de Angiotensina II , Astrócitos , AVC Isquêmico , Microglia , Neurônios , Ratos Wistar , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Telmisartan , Animais , Ratos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Benzimidazóis/farmacologia , Comunicação Celular/fisiologia , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Imidazóis/farmacologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Piridinas/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Telmisartan/farmacologia
7.
Glia ; 71(5): 1311-1332, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36655314

RESUMO

Spinal muscular atrophy (SMA) is characterized by the loss of the lower spinal motor neurons due to survival motor neuron (SMN) deficiency. The motor neuron cell autonomous and non-cell autonomous disease mechanisms driving early glutamatergic dysfunction, a therapeutically targetable phenotype prior to motor neuron cell loss, remain unclear. Using microelectrode array analysis, we demonstrate that the secretome and cell surface proteins needed for proper synaptic modulation are likely disrupted in human SMA astrocytes and lead to diminished motor neuron activity. While healthy astrocyte conditioned media did not improve SMA motor neuron activity, SMA motor neurons robustly responded to healthy astrocyte neuromodulation in direct contact cultures. This suggests an important role of astrocyte synaptic-associated plasma membrane proteins and contact-mediated cellular interactions for proper motor neuron function in SMA. Specifically, we identified a significant reduction of the glutamate Na+ dependent excitatory amino acid transporter EAAT1 within human SMA astrocytes and SMA lumbar spinal cord tissue. The selective inhibition of EAAT1 in healthy co-cultures phenocopied the diminished neural activity observed in SMA astrocyte co-cultures. Caveolin-1, an SMN-interacting protein previously associated with local translation at the plasma membrane, was abnormally elevated in human SMA astrocytes. Although lentiviral SMN delivery to SMA astrocytes partially rescued EAAT1 expression, limited activity of healthy motor neurons was still observed in SMN-transduced SMA astrocyte co-cultures. Together, these data highlight the detrimental impact of astrocyte-mediated disease mechanisms on motor neuron function in SMA and that SMN delivery may be insufficient to fully restore astrocyte function at the synapse.


Assuntos
Astrócitos , Atrofia Muscular Espinal , Humanos , Animais , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fatores de Transcrição/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Modelos Animais de Doenças
8.
Toxicol Appl Pharmacol ; 476: 116675, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661062

RESUMO

Methodical screening of safe and efficient drug candidate compounds is crucial for drug development. A high-throughput and accurate compound evaluation method targeting the central nervous system can be developed using in vitro neural networks. In particular, an evaluation system based on a human-derived neural network that can act as an alternative to animal experiments is desirable to avoid interspecific differences. A microelectrode array (MEA) is one such evaluation system, and can measure in vitro neural activity; however, studies on compound evaluation criteria and in vitro to in vivo extrapolation are scarce. In this study, we identified the parameters that can eliminate the effects of solvents from neural activity data obtained using MEA allow for accurate compound evaluation. Additionally, we resolved the issue associated with compound evaluation criteria during MEA using principal component analysis by considering the neuronal activity exceeding standard deviation (SD) of the solvent as indicator of seizurogenic potential. Overall, 10 seizurogenic compounds and three negative controls were assessed using MEA-based co-cultured human-induced pluripotent stem cell-derived neurons and astrocytes, and primary rat cortical neurons. In addition, we determined rat cerebrospinal fluid (CSF) concentrations during tremor and convulsion in response to exposure to test compounds. To characterize the in vitro to in vivo extrapolation and species differences, we compared the concentrations at which neuronal activity exceeding the SD range of the solvent was detectable using the MEA system and rat CSF concentration.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Ratos , Neurônios , Convulsões , Solventes
9.
Biomed Microdevices ; 25(3): 31, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584876

RESUMO

Local field potentials, the extracellular electrical activities from brain regions, provide clinically relevant information about the status of neurophysiological conditions, including epilepsy. In this study, a 13-channel silicon-based single-shank microelectrode array (MEA) was designed and fabricated to record local field potentials (LFPs) from the different depths of a rat's brain. A titanium/gold layer was patterned as electrodes on an oxidized silicon substrate, and silicon dioxide was deposited as a passivation layer. The fabricated array was implanted in the somatosensory cortex of the right hemisphere of an anesthetized rat. The developed MEA was interfaced with an OpenBCI Cyton Daisy Biosensing Board to acquire the local field potentials. The LFPs were acquired at three different neurophysiological conditions, including baseline signals, chemically-induced epileptiform discharges, and recovered baseline signals after anti-epileptic drug (AED) administration. Further, time-frequency analyses were performed on the acquired biopotentials to study the difference in spatiotemporal features. The processed signals and time-frequency analyses clearly distinguish between pre-convulsant and post-AED baselines and evoked epileptiform discharges.


Assuntos
Encéfalo , Roedores , Ratos , Animais , Microeletrodos , Encéfalo/fisiologia
10.
Biomed Microdevices ; 25(3): 35, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646842

RESUMO

Microelectrode arrays (MEAs) have proven to be a powerful tool to study electrophysiological processes over the last decades with most technology developed for investigation of the heart or brain. Other targets in the field of bioelectronic medicine are the peripheral nervous system and its innervation of various organs. Beyond the heart and nervous systems, the beta cells of the pancreatic islets of Langerhans generate action potentials during the production of insulin. In vitro experiments have demonstrated that their activity is a biomarker for blood glucose levels, suggesting that recording their activity in vivo could support patients suffering from diabetes mellitus with long-term automated read-out of blood glucose concentrations. Here, we present a flexible polymer-based implant having 64 low impedance microelectrodes designed to be implanted to a depth of 10 mm into the pancreas. As a first step, the implant will be used in acute experiments in pigs to explore the electrophysiological processes of the pancreas in vivo. Beyond use in the pancreas, our flexible implant and simple implantation method may also be used in other organs such as the brain.


Assuntos
Glicemia , Ilhotas Pancreáticas , Animais , Suínos , Insulina , Encéfalo , Eletrofisiologia
11.
Inhal Toxicol ; 35(3-4): 76-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36053669

RESUMO

The most direct effects of inhaled harmful constituents are the effects on the airways. However, inhaled compounds can be rapidly absorbed and subsequently result in systemic effects. For example, e-cigarette vapor has been shown to evoke local effects in the lung, although little is known about subsequent effects in secondary target organs such as the brain. Traditionally, such effects are tested using in vivo models. As an alternative, we have combined two in vitro systems, which are Air-Liquid-Interface (ALI) cultured alveolar cells (A549) and rat primary cortical cultures grown on multi-well microelectrode arrays. This allows us to assess the neurological effects of inhaled compounds. We have used exposure to e-cigarette vapor, containing nicotine, menthol, or vanillin to test the model. Our results show that ALI cultured A549 cells respond to the exposure with the production of cytokines (IL8 and GROalpha). Furthermore, nicotine, menthol, and vanillin were found on the basolateral side of the cell culture, which indicates their translocation. Upon transfer of the basolateral medium to the primary cortical culture, exposure-related changes in spontaneous electrical activity were observed correlating with the presence of e-liquid components in the medium. These clear neuromodulatory effects demonstrate the feasibility of combining continuous exposure of ALI cultured cells with subsequent exposure of neuronal cells to assess neurotoxicity. Although further optimization steps are needed, such a combination of methods is important to assess the neurotoxic effects of inhaled compounds realistically. As such, an approach like this could play a role in future mechanism-based risk assessment strategies.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Ratos , Animais , Nicotina/toxicidade , Vapor do Cigarro Eletrônico/farmacologia , Mentol , Células Epiteliais
12.
J Physiol ; 600(14): 3287-3312, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679256

RESUMO

Cardiomyocyte cultures exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. In such preparations, beat rate variability exhibits features similar to those of heart rate variability in vivo. Mechanical deformations and forces feed back on the electrical properties of cardiomyocytes, but it is not fully elucidated how this mechano-electrical interplay affects beating variability in such preparations. Using stretchable microelectrode arrays, we assessed the effects of the myosin inhibitor blebbistatin and the non-selective stretch-activated channel blocker streptomycin on beating variability and on the response of neonatal or fetal murine ventricular cell cultures against deformation. Spontaneous electrical activity was recorded without stretch and upon predefined deformation protocols (5% uniaxial and 2% equibiaxial strain, applied repeatedly for 1 min every 3 min). Without stretch, spontaneous activity originated from the edge of the preparations, and its site of origin switched frequently in a complex manner across the cultures. Blebbistatin did not change mean beat rate, but it decreased the spatial complexity of spontaneous activity. In contrast, streptomycin did not exert any manifest effects. During the deformation protocols, beat rate increased transiently upon stretch but, paradoxically, also upon release. Blebbistatin attenuated the response to stretch, whereas this response was not affected by streptomycin. Therefore, our data support the notion that in a spontaneously firing network of cardiomyocytes, active force generation, rather than stretch-activated channels, is involved mechanistically in the complexity of the spatiotemporal patterns of spontaneous activity and in the stretch-induced acceleration of beating. KEY POINTS: Monolayer cultures of cardiac cells exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. Beating variability in these preparations recapitulates the power-law behaviour of heart rate variability in vivo. However, the effects of mechano-electrical feedback on beating variability are not yet fully understood. Using stretchable microelectrode arrays, we examined the effects of the contraction uncoupler blebbistatin and the non-specific stretch-activated channel blocker streptomycin on beating variability and on stretch-induced changes of beat rate. Without stretch, blebbistatin decreased the spatial complexity of beating variability, whereas streptomycin had no effects. Both stretch and release increased beat rate transiently; blebbistatin attenuated the increase of beat rate upon stretch, whereas streptomycin had no effects. Active force generation contributes to the complexity of spatiotemporal patterns of beating variability and to the increase of beat rate upon mechanical deformation. Our study contributes to the understanding of how mechano-electrical feedback influences heart rate variability.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Animais , Frequência Cardíaca/fisiologia , Camundongos , Microeletrodos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Estreptomicina/farmacologia
13.
Neurobiol Dis ; 163: 105587, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923109

RESUMO

Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta/genética , Neurônios Dopaminérgicos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Monoaminoxidase/deficiência , Monoaminoxidase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Receptores de N-Metil-D-Aspartato/metabolismo , Agressão , Transtornos Disruptivos, de Controle do Impulso e da Conduta/metabolismo , Transtornos Disruptivos, de Controle do Impulso e da Conduta/fisiopatologia , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual/metabolismo , Deficiência Intelectual/fisiopatologia , Masculino , Monoaminoxidase/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Sinapses/metabolismo , Transmissão Sináptica/genética
14.
Biomed Microdevices ; 24(4): 31, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36138255

RESUMO

Electrocorticography signals, the intracranial recording of electrical signatures of the brain, are recorded by non-penetrating planar electrode arrays placed on the cortical surface. Flexible electrode arrays minimize the tissue damage upon implantation. This work shows the design and development of a 32-channel flexible microelectrode array to record electrocorticography signals from the rat's brain. The array was fabricated on a biocompatible flexible polyimide substrate. A titanium/gold layer was patterned as electrodes, and a thin polyimide layer was used for insulation. The fabricated microelectrode array was mounted on the exposed somatosensory cortex of the right hemisphere of a rat after craniotomy and incision of the dura. The signals were recorded using OpenBCI Cyton Daisy Biosensing Boards. The array faithfully recorded the baseline electrocorticography signals, the induced epileptic activities after applying a convulsant, and the recovered baseline signals after applying an antiepileptic drug. The signals recorded by such fabricated microelectrode array from anesthetized rats demonstrate its potential to monitor electrical signatures corresponding to epilepsy. Finally, the time-frequency analyses highlight the difference in spatiotemporal features of baseline and evoked epileptic discharges.


Assuntos
Eletrocorticografia , Titânio , Animais , Anticonvulsivantes , Convulsivantes , Eletrodos Implantados , Ouro , Microeletrodos , Ratos , Roedores
15.
Eur Biophys J ; 51(6): 503-514, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35930029

RESUMO

Cultured neuronal networks (CNNs) are powerful tools for studying how neuronal representation and adaptation emerge in networks of controlled populations of neurons. To ensure the interaction of a CNN and an artificial setting, reliable operation in both open and closed loops should be provided. In this study, we integrated optogenetic stimulation with microelectrode array (MEA) recordings using a digital micromirror device and developed an improved research tool with a 64-channel interface for neuronal network control and data acquisition. We determined the ideal stimulation parameters including light intensity, frequency, and duty cycle for our configuration. This resulted in robust and reproducible neuronal responses. We also demonstrated both open and closed loop configurations in the new platform involving multiple bidirectional channels. Unlike previous approaches that combined optogenetic stimulation and MEA recordings, we did not use binary grid patterns, but assigned an adjustable-size, non-binary optical spot to each electrode. This approach allowed simultaneous use of multiple input-output channels and facilitated adaptation of the stimulation parameters. Hence, we advanced a 64-channel interface in that each channel can be controlled individually in both directions simultaneously without any interference or interrupts. The presented setup meets the requirements of research in neuronal plasticity, network encoding and representation, closed-loop control of firing rate and synchronization. Researchers who develop closed-loop control techniques and adaptive stimulation strategies for network activity will benefit much from this novel setup.


Assuntos
Neurônios , Optogenética , Eletrofisiologia/métodos , Microeletrodos , Optogenética/métodos
16.
Acta Neurochir (Wien) ; 164(9): 2299-2302, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35604492

RESUMO

We present an implantable brain-computer interface surgical case assisted by robotic navigation system in an elderly patient with tetraplegia caused by cervical spinal cord injury. Left primary motor cortex was selected for implantation of microelectrode arrays based on fMRI location of motor imagery. Robotic navigation system was used during this procedure for precise and stable manipulation. A design of bipartite incision was made to reduce the risk of surgery-related infection and facilitate BCI training. At 1-year follow-up, the neural signals were robust, and this patient was able to control three-dimensional movement of a prosthetic limb without any complications.


Assuntos
Interfaces Cérebro-Computador , Procedimentos Cirúrgicos Robóticos , Robótica , Idoso , Eletroencefalografia/métodos , Humanos , Movimento , Quadriplegia
17.
BMC Med Inform Decis Mak ; 22(1): 290, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352381

RESUMO

BACKGROUND: Epilepsy is the fourth-most common neurological disorder, affecting an estimated 50 million patients globally. Nearly 40% of patients have uncontrolled seizures yet incur 80% of the cost. Anti-epileptic drugs commonly result in resistance and reversion to uncontrolled drug-resistant epilepsy and are often associated with significant adverse effects. This has led to a trial-and-error system in which physicians spend months to years attempting to identify the optimal therapeutic approach. OBJECTIVE: To investigate the potential clinical utility from the context of optimal therapeutic prediction of characterizing cellular electrophysiology. It is well-established that genomic data alone can sometimes be predictive of effective therapeutic approach. Thus, to assess the predictive power of electrophysiological data, machine learning strategies are implemented to predict a subject's genetically defined class in an in silico model using brief electrophysiological recordings obtained from simulated neuronal networks. METHODS: A dynamic network of isogenic neurons is modeled in silico for 1-s for 228 dynamically modeled patients falling into one of three categories: healthy, general sodium channel gain of function, or inhibitory sodium channel loss of function. Data from previous studies investigating the electrophysiological and cellular properties of neurons in vitro are used to define the parameters governing said models. Ninety-two electrophysiological features defining the nature and consistency of network connectivity, activity, waveform shape, and complexity are extracted for each patient network and t-tests are used for feature selection for the following machine learning algorithms: Neural Network, Support Vector Machine, Gaussian Naïve Bayes Classifier, Decision Tree, and Gradient Boosting Decision Tree. Finally, their performance in accurately predicting which genetic category the subjects fall under is assessed. RESULTS: Several machine learning algorithms excel in using electrophysiological data from isogenic neurons to accurately predict genetic class with a Gaussian Naïve Bayes Classifier predicting healthy, gain of function, and overall, with the best accuracy, area under the curve, and F1. The Gradient Boosting Decision Tree performs the best for loss of function models indicated by the same metrics. CONCLUSIONS: It is possible for machine learning algorithms to use electrophysiological data to predict clinically valuable metrics such as optimal therapeutic approach, especially when combining several models.


Assuntos
Epilepsia , Aprendizado de Máquina , Humanos , Teorema de Bayes , Algoritmos , Máquina de Vetores de Suporte , Epilepsia/diagnóstico , Epilepsia/genética , Simulação por Computador , Neurônios , Mutação
18.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35162023

RESUMO

Electrocorticography (ECoG) is a conventional, invasive technique for recording brain signals from the cortical surface using an array of electrodes. In this study, we developed a highly flexible 22-channel ECoG microelectrode array on a thin Parylene film using novel fabrication techniques. Narrow (<40 µm) and thin (<500 nm) microelectrode patterns were first printed on PDMS, then the patterns were transferred onto Parylene films via vapor deposition and peeling. A custom-designed, 3D-printed connector was built and assembled with the Parylene-based flexible ECoG microelectrode array without soldering. The impedance of the assembled ECoG electrode array was measured in vitro by electrochemical impedance spectroscopy, and the result was consistent. In addition, we conducted in vivo studies by implanting the flexible ECoG sensor in a rat and successfully recording brain signals.


Assuntos
Eletrocorticografia , Xilenos , Animais , Microeletrodos , Polímeros , Ratos
19.
Beilstein J Org Chem ; 18: 1488-1498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36320341

RESUMO

Microelectrode arrays are powerful tools for monitoring binding interactions between small molecules and biological targets. In most cases, molecules to be studied using such devices are attached directly to the electrodes in the array. Strategies are in place for calibrating signaling studies utilizing the modified electrodes so that they can be quantified relative to a positive control. In this way, the relative binding constants for multiple ligands for a receptor can potentially be determined in the same experiment. However, there are applications of microelectrode arrays that require stable, tunable, and chemically inert surfaces on the electrodes. The use of those surfaces dictate the use of indirect detection methods that are dependent on the nature of the stable surface used and the amount of the binding partner that is placed on the surface. If one wants to do a quantitative study of binding events that involve molecules on such a stable surface, then once again a method for calibrating the signal from a positive control is needed. Fortunately, the electrodes in an array are excellent handles for conducting synthetic reactions on the surface of an array, and those reactions can be used to tune the surface above the electrodes and calibrate the signal from a positive control. Here, we describe how available Cu-based electrosynthetic reactions can be used to calibrate electrochemical signals on a polymer-coated electrode array and delineate the factors to be considered when choosing a polymer surface for such a study.

20.
Biochem Biophys Res Commun ; 576: 117-122, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34487889

RESUMO

Cardiac reentry is a lethal arrhythmia associated with cardiac diseases. Although arrhythmias are reported to be due to localized propagation abnormalities, little is known about the mechanisms underlying the initiation and termination of reentry. This is primarily because of a lack of an appropriate experimental system in which activity pattern switches between reentry and normal beating can be investigated. In this study, we aimed to develop a culture system for measuring the spatial dynamics of reentry-like activity during its onset and termination. Rat cardiomyocytes were seeded in microelectrode arrays and purified with a glucose-free culture medium to generate a culture with a heterogeneous cell density. Reentry-like activity was recorded in purified cardiomyocytes, but not in the controls. Reentry-like activity occurred by a unidirectional conduction block after shortening of the inter-beat interval. Furthermore, reentry-like activity was terminated after propagation with a conduction delay of less than 300 ms, irrespective of whether the propagation pattern changed or not. These results indicate that a simple purification process is sufficient to induce reentry-like activity. In the future, a more detailed evaluation of spatial dynamics will contribute to the development of effective treatment methods.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/fisiopatologia , Bloqueio Cardíaco/fisiopatologia , Sistema de Condução Cardíaco/fisiologia , Microeletrodos/normas , Miócitos Cardíacos/fisiologia , Animais , Células Cultivadas , Modelos Animais , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA