Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med ; 21(1): 286, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542262

RESUMO

BACKGROUND: Microglia are known to regulate stress and anxiety in both humans and animal models. Psychosocial stress is the most common risk factor for the development of schizophrenia. However, how microglia/brain macrophages contribute to schizophrenia is not well established. We hypothesized that effector molecules expressed in microglia/macrophages were involved in schizophrenia via regulating stress susceptibility. METHODS: We recruited a cohort of first episode schizophrenia (FES) patients (n = 51) and age- and sex-paired healthy controls (HCs) (n = 46) with evaluated stress perception. We performed blood RNA-sequencing (RNA-seq) and brain magnetic resonance imaging, and measured plasma level of colony stimulating factor 1 receptor (CSF1R). Furthermore, we studied a mouse model of chronic unpredictable stress (CUS) combined with a CSF1R inhibitor (CSF1Ri) (n = 9 ~ 10/group) on anxiety behaviours and microglial biology. RESULTS: FES patients showed higher scores of perceived stress scale (PSS, p < 0.05), lower blood CSF1R mRNA (FDR = 0.003) and protein (p < 0.05) levels, and smaller volumes of the superior frontal gyrus and parahippocampal gyrus (both FDR < 0.05) than HCs. In blood RNA-seq, CSF1R-associated differentially expressed blood genes were related to brain development. Importantly, CSF1R facilitated a negative association of the superior frontal gyrus with PSS (p < 0.01) in HCs but not FES patients. In mouse CUS+CSF1Ri model, similarly as CUS, CSF1Ri enhanced anxiety (both p < 0.001). Genes for brain angiogenesis and intensity of CD31+-blood vessels were dampened after CUS-CSF1Ri treatment. Furthermore, CSF1Ri preferentially diminished juxta-vascular microglia/macrophages and induced microglia/macrophages morphological changes (all p < 0.05). CONCLUSION: Microglial/macrophagic CSF1R regulated schizophrenia-associated stress and brain angiogenesis.


Assuntos
Microglia , Esquizofrenia , Animais , Humanos , Camundongos , Encéfalo/patologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
2.
Int J Cancer ; 135(11): 2569-78, 2014 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-24752463

RESUMO

The invasiveness of malignant gliomas is one of the major obstacles in glioma therapy and the reason for the poor survival of patients. Glioma cells infiltrate into the brain parenchyma and thereby escape surgical resection. Glioma associated microglia/macrophages support glioma infiltration into the brain parenchyma by increased expression and activation of extracellular matrix degrading proteases such as matrix metalloprotease (MMP) 2, MMP9 and membrane-type 1 MMP. In this work we demonstrate that, MMP9 is predominantly expressed by glioma associated microglia/macrophages in mouse and human glioma tissue but not by the glioma cells. Supernatant from glioma cells induced the expression of MMP9 in cultured microglial cells. Using mice deficient for different Toll-like receptors we identified Toll-like receptor 2/6 as the signaling pathway for the glioma induced upregulation of microglial MMP9. Also in an experimental mouse glioma model, Toll-like receptor 2 deficiency attenuated the upregulation of microglial MMP9. Moreover, glioma supernatant triggered an upregulation of Toll-like receptor 2 expression in microglia. Both, the upregulation of MMP9 and Toll-like receptor 2 were attenuated by the antibiotic minocycline and a p38 mitogen-activated protein kinase antagonist in vitro. Minocycline also extended the survival rate of glioma bearing mice when given to the drinking water. Thus glioma cells change the phenotype of glioma associated microglia/macrophages in a complex fashion using Toll-like receptor 2 as an important signaling pathway and minocycline further proved to be a potential candidate for adjuvant glioma therapy.


Assuntos
Antibacterianos/farmacologia , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Minociclina/farmacologia , Receptor 2 Toll-Like/metabolismo , Animais , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Técnicas Imunoenzimáticas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Células Tumorais Cultivadas
3.
Mol Neurodegener ; 19(1): 48, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886816

RESUMO

BACKGROUND: Aging significantly elevates the risk of developing neurodegenerative diseases. Neuroinflammation is a universal hallmark of neurodegeneration as well as normal brain aging. Which branches of age-related neuroinflammation, and how they precondition the brain toward pathological progression, remain ill-understood. The presence of elevated type I interferon (IFN-I) has been documented in the aged brain, but its role in promoting degenerative processes, such as the loss of neurons in vulnerable regions, has not been studied in depth. METHODS: To comprehend the scope of IFN-I activity in the aging brain, we surveyed IFN-I-responsive reporter mice at multiple ages. We also examined 5- and 24-month-old mice harboring selective ablation of Ifnar1 in microglia to observe the effects of manipulating this pathway during the aging process using bulk RNA sequencing and histological parameters. RESULTS: We detected age-dependent IFN-I signal escalation in multiple brain cell types from various regions, especially in microglia. Selective ablation of Ifnar1 from microglia in aged mice significantly reduced overall brain IFN-I signature, dampened microglial reactivity, lessened neuronal loss, restored expression of key neuronal genes and pathways, and diminished the accumulation of lipofuscin, a core hallmark of cellular aging in the brain. CONCLUSIONS: Overall, our study demonstrates pervasive IFN-I activity during normal mouse brain aging and reveals a pathogenic, pro-degenerative role played by microglial IFN-I signaling in perpetuating neuroinflammation, neuronal dysfunction, and molecular aggregation. These findings extend the understanding of a principal axis of age-related inflammation in the brain, one likely shared with multiple neurological disorders, and provide a rationale to modulate aberrant immune activation to mitigate neurodegenerative process at all stages.


Assuntos
Envelhecimento , Encéfalo , Interferon Tipo I , Microglia , Transdução de Sinais , Animais , Envelhecimento/metabolismo , Interferon Tipo I/metabolismo , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Transdução de Sinais/fisiologia , Microglia/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Neurônios/metabolismo
4.
Neuromolecular Med ; 22(2): 264-277, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31792810

RESUMO

BACKGROUND: Scutellarin, an herbal compound, can effectively suppress the inflammatory response in activated microglia/brain macrophage(AM/BM) in experimentally induced cerebral ischemia; however, the underlying mechanism for this has not been fully clarified. We sought to elucidate if scutellarin would exert its anti-inflammatory effects on AM/BM through the MAPKs pathway. MATERIALS AND METHODS: Western blot and immunofluorescence labeling were used to determine the expression of the MAPKs pathway in AM/BM in rats subjected to middle cerebral artery occlusion (MCAO) also in lipopolysaccharide (LPS)-activated BV-2 microglia in vitro. Furthermore, expression of p-p38 along with that of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta(IL-1ß), and inducible nitric oxide synthase (iNOS) in LPS-activated microglia subjected to pretreatment with p38 inhibitor SB203580, p38 activator sc-201214, scutellarin, or a combination of them was evaluated. FINDINGS: Scutellarin markedly attenuated the expression of p-p38, p-JNK in AM/BM in MCAO rats and in vitro. Conversely, p-ERK1/2 expression level was significantly increased by scutellarin. Meanwhile, scutellarin suppressed the expression of proinflammatory mediators including iNOS, TNF-α, and IL-1ß in AM/BM. More importantly, SB203580 suppressed p-p38 protein expression level in LPS-activated BV-2 microglia that was coupled with decreased expression of proinflammatory mediators (TNF-α, iNOS) in LPS-activated BV-2 microglia. However, p38 activator sc-201214 increased expression of proinflammatory mediators TNF-α, iNOS, and IL-1ß. Interestingly, the decreased expression of both proinflammatory markers by p38 MAPK inhibitor and increased expression of proinflammatory markers by p38 MAPK activator were compatible with that in BV-2-activated microglia pretreated with scutellarin. CONCLUSIONS: The results suggest that scutellarin down-regulates the expression of proinflammatory mediators in AM/BM through suppressing the p-JNK and p-p38 MAPKs. Of note, the anti-inflammatory effect of p38 MAPK inhibitor and scutellarin is comparable. Besides, p38 MAPKs activator reverses the effect of scutellarin. Additionally, scutellarin increases p-ERK1/2 expression that may be neuroprotective.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Apigenina/farmacologia , Glucuronatos/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Apigenina/uso terapêutico , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronatos/uso terapêutico , Imidazóis/farmacologia , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Proteínas Quinases/biossíntese , Proteínas Quinases/genética , Piridinas/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
5.
J Neuropathol Exp Neurol ; 75(5): 429-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27030742

RESUMO

Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor 4 Toll-Like/biossíntese , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Galinhas , Glioma/patologia , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Regulação para Cima/fisiologia
6.
Neuro Oncol ; 17(2): 200-10, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25452390

RESUMO

BACKGROUND: Accumulation and infiltration of microglia/brain macrophages around and into glioma tissue promote tumor invasion and expansion. One tumor-promoting mechanism of microglia/brain macrophages is upregulation of membrane type 1 matrix metalloprotease (MT1-MMP), which promotes the degradation of extracellular matrix. MT1-MMP upregulation is induced by soluble factors released by glioma cells activating microglial Toll-like receptor 2 (TLR2). METHODS: Versican identified by proteomics was silenced in glioma cells by short interference RNA and short hairpin RNA approaches and studied in vitro and after injection into mouse brains or organotypic brain slices. RESULTS: The splice variants V0/V1 of the endogenous TLR2 ligand versican are highly expressed in mouse and human glioma tissue. Versican-silenced gliomas induced less MT1-MMP expression in microglia both in vitro and in vivo, which resulted in smaller tumors and longer survival rates as compared with controls. Recombinant versican V1 induced significantly higher levels of MT1-MMP in wild-type microglia compared with untreated and treated TLR2 knockout microglial cells. Using glioma-injected organotypic brain slices, we found that the impact of versican signaling on glioma growth depended on the presence of microglia. Moreover, we found that TLR2 expression is upregulated in glioma-associated microglia but not in astrocytes. Additionally, an established TLR2 neutralizing antibody reduced glioma-induced microglial MT1-MMP expression as well as glioma growth ex vivo. CONCLUSIONS: Our results show that versican released from glioma promotes tumor expansion through glioma-associated microglial/macrophage TLR2 signaling and subsequent expression of MT1-MMP. This signaling cascade might be a novel target for glioma therapies.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Macrófagos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Microglia/metabolismo , Receptor 2 Toll-Like/metabolismo , Versicanas/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Taxa de Sobrevida , Receptor 2 Toll-Like/genética
7.
Neuro Oncol ; 15(11): 1457-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014382

RESUMO

BACKGROUND: Glioblastomas are the most aggressive primary brain tumors in humans. Microglia/brain macrophage accumulation in and around the tumor correlates with malignancy and poor clinical prognosis of these tumors. We have previously shown that microglia promote glioma expansion through upregulation of membrane type 1 matrix metalloprotease (MT1-MMP). This upregulation depends on signaling via the Toll-like receptor (TLR) adaptor molecule myeloid differentiation primary response gene 88 (MyD88). METHODS: Using in vitro, ex vivo, and in vivo techniques, we identified TLR2 as the main TLR controlling microglial MT1-MMP expression and promoting microglia-assisted glioma expansion. RESULTS: The implantation of mouse GL261 glioma cells into TLR2 knockout mice resulted in significantly smaller tumors, reduced MT1-MMP expression, and enhanced survival rates compared with wild-type control mice. Tumor expansion studied in organotypic brain slices depended on both parenchymal TLR2 expression and the presence of microglia. Glioma-derived soluble factors and synthetic TLR2 specific ligands induced MT1-MMP expression in microglia from wild-type mice, but no such change in MT1-MMP gene expression was observed in microglia from TLR2 knockout mice. We also found evidence that TLR1 and TLR6 cofunction with TLR2 as heterodimers in regulating MT1-MMP expression in vitro. CONCLUSIONS: Our results thus show that activation of TLR2 along with TLRs 1 and/or 6 converts microglia into a glioma supportive phenotype.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Ativação de Macrófagos , Metaloproteinase 14 da Matriz/metabolismo , Microglia/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Encéfalo/patologia , Feminino , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Taxa de Sobrevida , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA