Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101580

RESUMO

Genetics and other data modalities indicate that microglia play a critical role in Alzheimer's disease (AD) progression, but details of microglia's disease-driving influence are poorly understood. Microglial cells can be parsed into subtypes based on their histologic appearance. One microglia subtype, termed dystrophic microglia, is characterised structurally by fragmented processes and cytoplasmic decay, and their presence has been associated with ageing and neurodegeneration. Recent studies suggest that the interaction between tau proteins and amyloid-ß might induce dystrophic changes in microglia, potentially linking amyloid-ß and tau pathologies to their effects on these microglia. We developed a study of human brains to test the hypothesis that dystrophic microglia are involved in AD progression. We speculated that if their presence is unique to AD neuropathologic change (ADNC), they would be substantially more common in ADNC than in neurodegenerative diseases characterised by other proteinopathies, e.g., α-synuclein or TDP-43 pathology. Our analyses used histologically stained sections from five human brain regions of 64 individuals across six disease states, from healthy controls to advanced AD stages, including comparative conditions such as Lewy Body Disease (LBD) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Using stereological sampling and digital pathology, we assessed ramified, hypertrophic, and dystrophic microglia populations. We found a significant increase in dystrophic microglia in areas early affected by ADNC, suggesting a disease-specific role in neuropathology. Mediation analysis and structural equation modelling suggest dystrophic microglia may impact the regional spread of ADNC. In the mediation model, tau was found to be the initiating factor leading to the development of dystrophic microglia, which then was associated with the spread of amyloid-ß and tau. These results suggest that a loss of microglia's protective role could contribute to the spread of ADNC and indicate that further research into preserving microglial function may be warranted.

2.
Brain Behav Immun ; 117: 12-19, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38157946

RESUMO

Microglia, resident immune cells in the central nervous system, constantly monitor the state of the surrounding brain activity. The animal model induced by sleep deprivation (SD) is widely used to study the pathophysiological mechanisms of insomnia and bipolar disorder. However, it remains unclear whether SD affects behaviors in young and aged male mice and microglia in various brain regions. In this study, we confirmed brain region-specific changes in microglial density and morphology in the accumbens nucleus (Acb), amygdala (AMY), cerebellum (Cb), corpus callosum (cc), caudate putamen, hippocampus (HIP), hypothalamus (HYP), medial prefrontal cortex (mPFC), and thalamus (TH) of young mice. In addition, the density of microglia in old mice was higher than that in young mice. Compared with young mice, old mice showed a markedly increased microglial size, decreased total length of microglial processes, and decreased maximum length. Importantly, we found that 48-h SD decreased microglial density and morphology in old mice, whereas SD increased microglial density and morphology in most observed brain regions in young mice. SD-induced hyperactivity was observed only in young mice but not in old mice. Moreover, microglial density (HIP, AMY, mPFC, CPu) was significantly positively correlated with behaviors in SD- and vehicle-treated young mice. Contrarily, negative correlations were shown between the microglial density (cc, Cb, TH, HYP, Acb, AMY) and behaviors in vehicle-treated young and old mice. These results suggest that SD dysregulates the homeostatic state of microglia in a region- and age-dependent manner. Microglia may be involved in regulating age-related behavioral responses to SD.


Assuntos
Microglia , Privação do Sono , Camundongos , Masculino , Animais , Encéfalo , Hipocampo , Tonsila do Cerebelo
3.
Glia ; 71(2): 366-376, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36196985

RESUMO

In nocturnal animals, waking appears during the dark period while maximal non-rapid-eye-movement sleep (NREMS) with electroencephalographic slow-wave-activity (SWA) takes place at the beginning of the light period. Vigilance states associate with variable levels of neuronal activity: waking with high-frequency activity patterns while during NREMS, SWA influences neuronal activity in many brain areas. On a glial level, sleep deprivation modifies microglial morphology, but only few studies have investigated microglia through the physiological sleep-wake cycle. To quantify microglial morphology (territory, volume, ramification) throughout the 24 h light-dark cycle, we collected brain samples from inbred C57BL male mice (n = 51) every 3 h and applied a 3D-reconstruction method for microglial cells on the acquired confocal microscopy images. As microglia express regional heterogeneity and are influenced by local neuronal activity, we chose to investigate three interconnected and functionally well-characterized brain areas: the somatosensory cortex (SC), the dorsal hippocampus (HC), and the basal forebrain (BF). To temporally associate microglial morphology with vigilance stages, we performed a 24 h polysomnography in a separate group of animals (n = 6). In line with previous findings, microglia displayed de-ramification in the 12 h light- and hyper-ramification in the 12 h dark period. Notably, we found that the decrease in microglial features was most prominent within the early hours of the light period, co-occurring with maximal sleep SWA. By the end of the light period, all features reached maximum levels and remained steadily elevated throughout the dark period with minor regional differences. We propose that vigilance-stage specific neuronal activity, and SWA, could modify microglial morphology.


Assuntos
Microglia , Sono , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Sono/fisiologia , Vigília/fisiologia , Eletroencefalografia/métodos
4.
J Neuroinflammation ; 19(1): 292, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482444

RESUMO

The hippocampus is a plastic brain area that shows functional segregation along its longitudinal axis, reflected by a higher level of long-term potentiation (LTP) in the CA1 region of the dorsal hippocampus (DH) compared to the ventral hippocampus (VH), but the mechanisms underlying this difference remain elusive. Numerous studies have highlighted the importance of microglia-neuronal communication in modulating synaptic transmission and hippocampal plasticity, although its role in physiological contexts is still largely unknown. We characterized in depth the features of microglia in the two hippocampal poles and investigated their contribution to CA1 plasticity under physiological conditions. We unveiled the influence of microglia in differentially modulating the amplitude of LTP in the DH and VH, showing that minocycline or PLX5622 treatment reduced LTP amplitude in the DH, while increasing it in the VH. This was recapitulated in Cx3cr1 knockout mice, indicating that microglia have a key role in setting the conditions for plasticity processes in a region-specific manner, and that the CX3CL1-CX3CR1 pathway is a key element in determining the basal level of CA1 LTP in the two regions. The observed LTP differences at the two poles were associated with transcriptional changes in the expression of genes encoding for Il-1, Tnf-α, Il-6, and Bdnf, essential players of neuronal plasticity. Furthermore, microglia in the CA1 SR region showed an increase in soma and a more extensive arborization, an increased prevalence of immature lysosomes accompanied by an elevation in mRNA expression of phagocytic markers Mertk and Cd68 and a surge in the expression of microglial outward K+ currents in the VH compared to DH, suggesting a distinct basal phenotypic state of microglia across the two hippocampal poles. Overall, we characterized the molecular, morphological, ultrastructural, and functional profile of microglia at the two poles, suggesting that modifications in hippocampal subregions related to different microglial statuses can contribute to dissect the phenotypical aspects of many diseases in which microglia are known to be involved.


Assuntos
Plasticidade Neuronal , Masculino , Animais , Camundongos
5.
Adv Exp Med Biol ; 1074: 209-215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721946

RESUMO

Retinal degeneration often accompanies microglial activation and infiltration of monocyte-derived macrophages into the retina, resulting in the coexistence of microglia and monocyte-derived macrophages in the retina. We previously showed that the Sall1 zinc-finger transcriptional factor is expressed specifically in microglia within the retinal phagocyte pool, and analyses of Sall1 knockout mice revealed that microglial morphology changed from a ramified to a more amoeboid appearance in the developing retina. To investigate further whether Sall1 functions autonomously in microglia, we generated Sall1 conditional knockout mice, in which Sall1 was depleted specifically in the Cx3cr1+ microglial compartment of the developing retina. Sall1-deficient microglia exhibited morphological abnormalities on embryonic day 18 that strikingly resembled the phenotype observed in Sall1 knockout mice, demonstrating that Sall1 regulates microglial morphology cell autonomously. Analysis of the postnatal retina revealed that Sall1-deficient microglia extended their processes and their morphology became comparable to that of wild-type microglia on postnatal day 21, indicating that Sall1 is essential for microglial ramification in the developing retina, but not in the postnatal retina.


Assuntos
Proteínas do Olho/fisiologia , Microglia/ultraestrutura , Retina/citologia , Fatores de Transcrição/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/biossíntese , Receptor 1 de Quimiocina CX3C/genética , Forma Celular , Extensões da Superfície Celular/ultraestrutura , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Recombinantes/biossíntese , Retina/embriologia , Retina/crescimento & desenvolvimento , Tamoxifeno/farmacologia , Fatores de Transcrição/deficiência
6.
Brain Behav Immun ; 52: 88-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26441134

RESUMO

Susceptibility to stress-linked psychological disorders, including post-traumatic stress disorder and depression, differs between men and women. Dysfunction of medial prefrontal cortex (mPFC) has been implicated in many of these disorders. Chronic stress affects mPFC in a sex-dependent manner, differentially remodeling dendritic morphology and disrupting prefrontally mediated behaviors in males and females. Chronic restraint stress induces microglial activation, reflected in altered microglial morphology and immune factor expression, in mPFC in male rats. Unstressed females exhibit increased microglial ramification in several brain regions compared to males, suggesting both heightened basal activation and a potential for sex-dependent effects of stress on microglial activation. Therefore, we assessed microglial density and ramification in the prelimbic region of mPFC, and immune-associated genes in dorsal mPFC in male and female rats following acute or chronic restraint stress. Control rats were left unstressed. On the final day of restraint, brains were collected for either qPCR or visualization of microglia using Iba-1 immunohistochemistry. Microglia in mPFC were classified as ramified, primed, reactive, or amoeboid, and counted stereologically. Expression of microglia-associated genes (MHCII, CD40, IL6, CX3CL1, and CX3CR1) was also assessed using qPCR. Unstressed females showed a greater proportion of primed to ramified microglia relative to males, alongside heightened CX3CL1-CX3CR1 expression. Acute and chronic restraint stress reduced the proportion of primed to ramified microglia and microglial CD40 expression in females, but did not significantly alter microglial activation in males. This sex difference in microglial activation could contribute to the differential effects of stress on mPFC structure and function in males versus females.


Assuntos
Microglia/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Fisiológico/fisiologia , Estresse Psicológico/metabolismo , Animais , Peso Corporal , Dendritos/metabolismo , Feminino , Masculino , Microglia/citologia , Microglia/imunologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/imunologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Estresse Fisiológico/imunologia , Estresse Psicológico/imunologia
7.
Neuropathology ; 36(1): 3-16, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26303046

RESUMO

Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24 h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFα. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFα-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important.


Assuntos
Sistema Nervoso Central/patologia , Dengue/patologia , Inflamação/patologia , Animais , Anticorpos Antivirais/toxicidade , Barreira Hematoencefálica/patologia , Callithrix , Vírus da Dengue/imunologia , Hipocampo/patologia , Imuno-Histoquímica , Microglia/patologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37259303

RESUMO

Parkinson's disease (PD) is characterized by neurodegeneration and neuroinflammation. PD prevalence and incidence are higher in men than in women and modulation of gonadal hormones could have an impact on the disease course. This was investigated in male and female gonadectomized (GDX) and SHAM operated (SHAM) mice. Dutasteride (DUT), a 5α-reductase inhibitor, was administered to these mice for 10 days to modulate their gonadal sex hormones. On the fifth day of DUT treatment, mice received 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to model PD. We have previously shown in these mice the toxic effect of MPTP in SHAM and GDX males and in GDX females on dopamine markers and astrogliosis whereas SHAM females were protected by their female sex hormones. In SHAM males, DUT protected against MPTP toxicity. In the present study, microglial density and the number of doublets, representative of a microglial proliferation, were increased by the MPTP lesion only in male mice and prevented by DUT in SHAM males. A three-dimensional morphological microglial analysis showed that MPTP changed microglial morphology from quiescent to activated only in male mice and was not prevented by DUT. In conclusion, microgliosis can be modulated by sex hormone-dependent and independent factors in a mice model of PD.

9.
Front Immunol ; 13: 997786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341385

RESUMO

Microglia are mononuclear phagocytes of mesodermal origin that migrate to the central nervous system (CNS) during the early stages of embryonic development. After colonizing the CNS, they proliferate and remain able to self-renew throughout life, maintaining the number of microglia around 5-12% of the cells in the CNS parenchyma. They are considered to play key roles in development, homeostasis and innate immunity of the CNS. Microglia are exceptionally diverse in their morphological characteristics, actively modifying the shape of their processes and soma in response to different stimuli. This broad morphological spectrum of microglia responses is considered to be closely correlated to their diverse range of functions in health and disease. However, the morphophysiological attributes of microglia, and the structural and functional features of microglia-neuron interactions, remain largely unknown. Here, we assess the current knowledge of the diverse microglial morphologies, with a focus on the correlation between microglial shape and function. We also outline some of the current challenges, opportunities, and future directions that will help us to tackle unanswered questions about microglia, and to continue unravelling the mysteries of microglia, in all its shapes.


Assuntos
Sistema Nervoso Central , Microglia , Microglia/fisiologia , Neurônios , Homeostase
10.
Alzheimers Dement (Amst) ; 12(1): e12113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088896

RESUMO

INTRODUCTION: Microglial cells play an important role in the development of Alzheimer's disease (AD). People with Down syndrome (DS) inevitably develop AD neuropathology (DSAD) by 40 years of age. We characterized the distribution of different microglial phenotypes in the brains of people with DS and DSAD. METHODS: Autopsy tissue from the posterior cingulate cortex (PCC) from people with DS, DSAD, and neurotypical controls was immunostained with the microglial marker Iba1 to assess five microglia morphological types. RESULTS: Individuals with DS have more hypertrophic microglial cells in their white matter. In the gray matter, individuals with DSAD had significantly fewer ramified microglia and more dystrophic microglia than controls and the younger individuals with DS. The DSAD group also exhibited more rod-shaped and amoeboid cells than the AD group. DISCUSSION: Individuals with DS and DSAD show a microglial phenotype that distinguishes them from non-DS controls.

11.
Aging (Albany NY) ; 12(19): 19493-19519, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33041264

RESUMO

Large-scale epidemiological surveys suggest that hearing loss (HL) is a significant risk factor for dementia. We previously showed that noise-induced HL (NIHL) impairs hippocampal cognitive function and decreases hippocampal neurogenesis and neuronal complexity, suggesting a causal role of HL in dementia. To further investigate the influence of acquired peripheral HL on hippocampal neurogenesis with the aging process as well as the underlying mechanism, we produced NIHL in male CBA/J mice and assessed hippocampal neurogenesis and microglial morphology in the auditory brain and hippocampus at 4 days post-noise exposure (DPN) or 1, 3, 6, or 12 months post-noise exposure (MPN) by immunofluorescence labeling. We found that the age-related decline in hippocampal neurogenesis was accelerated in mice with NIHL. Furthermore, in mice with NIHL, prolonged microglial activation occurred from 1 MPN to 12 MPN across multiple auditory nuclei, while aggravated microglial deterioration occurred in the hippocampus and correlated with the age-related decline in hippocampal neurogenesis. These results suggest that acquired peripheral HL accelerates the age-related decline in hippocampal neurogenesis and that hippocampal microglial degeneration may contribute to the development of neurodegeneration following acquired peripheral HL.

12.
J Comp Neurol ; 528(4): 559-573, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31502243

RESUMO

The barrel cortex is within the primary somatosensory cortex of the rodent, and processes signals from the vibrissae. Much focus has been devoted to the function of neurons, more recently, the role of glial cells in the processing of sensory input has gained increasing interest. Microglia are the principal immune cells of the nervous system that survey and regulate the cellular constituents of the dynamic nervous system. We investigated the normal and disrupted development of microglia in barrel cortex by chronically depriving sensory signals via whisker trimming for the animals' first postnatal month. Using immunohistochemistry to label microglia, we performed morphological reconstructions as well as densitometry analyses as a function of developmental age and sensory experience. Findings suggest that both developmental age and sensory experience has profound impact on microglia morphology. Following chronic sensory deprivation, microglia undergo a morphological transition from a monitoring or resting state to an altered morphological state, by exhibiting expanded cell body size and retracted processes. Sensory restoration via whisker regrowth returns these morphological alterations back to age-matched control values. Our results indicate that microglia may be recruited to participate in the modulation of neuronal structural remodeling during developmental critical periods and in response to alteration in sensory input.


Assuntos
Microglia/fisiologia , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Vibrissas/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Microglia/química , Córtex Somatossensorial/química , Córtex Somatossensorial/citologia , Vibrissas/inervação
13.
J Neuroimmune Pharmacol ; 14(2): 251-262, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30343448

RESUMO

Effect of age and ladostigil treatment (1 mg/kg/day), given for 6 months to 16 month old rats, was investigated on microglial morphology in brain regions associated with control of spatial learning. This was assessed in the Morris water maze (MWM). Microglial morphology was assessed with diaminobenzidine and fluorescent staining with Iba1 and CD11b in these brain regions. Aging did not change the number of microglia in the parietal cortex (PC) or hippocampal CA1 region (CA1-HC), but decreased microglial process tips in the CA1-HC, increased the area fraction stained by CD11b and number of bulbs on processes in PC and CA1-HC and thickness of microglial processes in corpus callosum (CC) and fornix (Fx). Performance in MWM (distance swam to escape platform) was negatively correlated with number of bulbs in PC and thickness of process in CC, and positively correlated with number of process tips in CA1-HC. Aging increased expression of MHC class II genes and others associated with motility and membrane adhesion in the PC and hippocampus, but Adora2a (Adenosine A2a receptor), only in hippocampus. Age-related increase in the number of bulbs and expression of inflammatory genes was prevented by ladostigil in PC. In the CA1-HC, ladostigil increased the number of process tips and prevented the increase in expression of Adora2a and genes regulating ion channels. Ladostigil also decreased thickening of the processes in CC and Fx. The data show brain region-specific relations induced by age in spatial learning, microglial morphology and associated genes and their response to ladostigil treatment. Graphical Abstract.


Assuntos
Envelhecimento/patologia , Envelhecimento/psicologia , Encéfalo/patologia , Expressão Gênica/genética , Transtornos da Memória/patologia , Transtornos da Memória/psicologia , Microglia/patologia , Percepção Espacial , Envelhecimento/genética , Animais , Região CA1 Hipocampal/patologia , Fórnice/patologia , Indanos/farmacologia , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/genética , Microglia/ultraestrutura , Lobo Parietal/patologia , Ratos , Ratos Wistar
14.
Front Cell Neurosci ; 13: 344, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417364

RESUMO

Autism spectrum disorder (ASD) is one of the most widespread neurodevelopmental disorders, characterized by impairment in social interactions, and restricted stereotyped behaviors. Using immunohistochemistry and positron emission tomography (PET), several studies have provided evidence of the existence of activated microglia in ASD patients. Recently, we developed an animal model of ASD using the new world monkey common marmoset (Callithrix jacchus) and demonstrated ASD-like social impairment after the in utero administration of valproic acid (VPA). To characterize microglia in this marmoset model of ASD from early toddler to adult, morphological analyses of microglia in VPA marmosets and age-matched unexposed (UE) marmosets were performed using immunohistochemistry for microglia-specific markers, Iba1, and P2RY12. The most robust morphological difference between VPA marmosets and UE marmosets throughout the life span evaluated were the microglia processes in VPA marmosets being frequently segmented by thin and faintly Iba1-positive structures. The segmentation of microglial processes was only rarely observed in UE marmosets. This feature of segmentation of microglial processes in VPA marmosets can also be observed in images from previous studies on ASD conducted in humans and animal models. Apoptotic cells have been shown to have segmented processes. Therefore, our results might suggest that microglia in patients and animals with ASD symptoms could frequently be in the apoptotic phase with high turnover rates of microglia found in some pathological conditions.

15.
Front Cell Neurosci ; 13: 412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572128

RESUMO

ATP-binding cassette (ABC) transporters prevent the access of pharmacological compounds to the ischemic brain, thereby impeding the efficacy of stroke therapies. ABC transporters can be deactivated by selective inhibitors, which potently increase the brain accumulation of drugs. Concerns have been raised that long-term ABC transporter deactivation may promote neuronal degeneration and, under conditions of ischemic stroke, compromise neurological recovery. To elucidate this issue, we exposed male C57BL/6 mice to transient intraluminal middle cerebral artery occlusion (MCAO) and examined the effects of the selective ABCB1 inhibitor tariquidar (8 mg/kg/day) or ABCC1 inhibitor MK-571 (10 mg/kg/day), which were administered alone or in combination with each other over up to 28 days, on neurological recovery and brain injury. Mice were sacrificed after 14, 28, or 56 days. The Clark score, RotaRod, tight rope, and open field tests revealed reproducible motor-coordination deficits in mice exposed to intraluminal MCAO, which were not influenced by ABCB1, ABCC1, or combined ABCB1 and ABCC1 deactivation. Brain volume, striatum volume, and corpus callosum thickness were not altered by ABCB1, ABCC1 or ABCB1, and ABCC1 inhibitors. Similarly, neuronal survival and reactive astrogliosis, evaluated by NeuN and GFAP immunohistochemistry in the ischemic striatum, were unchanged. Iba1 immunohistochemistry revealed no changes of the overall density of activated microglia in the ischemic striatum of ABC transporter inhibitor treated mice, but subtle changes of microglial morphology, that is, reduced microglial cell volume by ABCB1 deactivation after 14 and 28 days and reduced microglial ramification by ABCB1, ABCC1 and combined ABCB1 and ABCC1 deactivation after 56 days. Endogenous neurogenesis, assessed by BrdU incorporation analysis, was not influenced by ABCB1, ABCC1 or combined ABCB1 and ABCC1 deactivation. Taken together, this study could not detect any exacerbation of neurological deficits or brain injury after long-term ABC transporter deactivation in this preclinical stroke model.

16.
J Chem Neuroanat ; 61-62: 176-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25462387

RESUMO

We investigated whether the morphology of microglia in the molecular layer of the dentate gyrus (DG-Mol) or in the lacunosum molecular layer of CA1 (CA1-LMol) was correlated with spatial learning and memory in the capuchin monkey (Cebus apella). Learning and memory was tested in 4 monkeys with visuo-spatial, paired associated learning (PAL) tasks from the Cambridge battery of neuropsychological tests. After testing, monkeys were sacrificed, and hippocampi were sectioned. We specifically immunolabeled microglia with an antibody against the adapter binding, ionized calcium protein. Microglia were selected from the middle and outer thirds of the DG-Mol (n=268) and the CA1-LMol (n=185) for three-dimensional reconstructions created with Neurolucida and Neuroexplorer software. Cluster and discriminant analyses, based on microglial morphometric parameters, identified two major morphological microglia phenotypes (types I and II) found in both the CA1-LMol and DG-Mol of all individuals. Compared to type II, type I microglia were significantly smaller, thinner, more tortuous and ramified, and less complex (lower fractal dimensions). PAL performance was both linearly and non-linearly correlated with type I microglial morphological features from the rostral and caudal DG-Mol, but not with microglia from the CA1-LMol. These differences in microglial morphology and correlations with PAL performance were consistent with previous proposals of hippocampal regional contributions for spatial learning and memory. Our results suggested that at least two morphological microglial phenotypes provided distinct physiological roles to learning-associated activity in the rostral and caudal DG-Mol of the monkey brain.


Assuntos
Região CA1 Hipocampal/citologia , Giro Denteado/citologia , Memória/fisiologia , Microglia/citologia , Aprendizagem Espacial/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Cebus , Análise por Conglomerados , Giro Denteado/fisiologia , Feminino , Imageamento Tridimensional , Imuno-Histoquímica , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA