RESUMO
The progression of self-powered micro/-nanomotors (MNMs) has rapidly evolved over the past few decades, showing applications in various fields such as nanotechnology, biomedical engineering, microfluidics, environmental science, and energy harvesting. Miniaturized MNMs transduce chemical/biochemical energies into mechanical motion for navigating through complex fluidic environments with directional control via external forces fields such as magnetic, photonic, and electric stimuli. Among various propulsion mechanisms, buoyancy-driven MNMs have received noteworthy recognition due to their simplicity, efficiency, and versatility. Buoyancy force-driven motors harness the principles of density variation-mediated force to overcome fluidic resistance to navigate through complex environments. Restricting the propulsion in one direction helps to control directional movement, making it more efficient in isotropic solutions. The changes in pH, ionic strength, chemical concentration, solute gradients, or the presence of specific molecules can influence the motion of buoyancy-driven MNMs as evidenced by earlier reports. This review aims to provide a fundamental and detailed analysis of the current state-of-the-art in buoyancy-driven MNMs, aiming to inspire further research and innovation in this promising field.
RESUMO
Traditional metal-organic frameworks (MOFs) based micro/nanomotors (MOFtors) can achieve three-dimensional (3D) motion mainly depending on noble metal (e.g., Pt), toxic fuels (e.g., hydrogen peroxide), and surfactants, or under external magnetic fields. In this study, light-driven MOFtors are constructed based on PCN-224(H) and regulated their photothermal and photochemical properties responding to the light of different wavelengths through porphyrin metalation. The resulting PCN-224(Fe) MOFtors presented a strong 3D motion at a maximum speed of 1234.9 ± 367.5 µm s-1 under visible light due to the various gradient fields by the photothermal and photochemical effects. Such MOFtors exhibit excellent water sterilization performance. Under optimal conditions, the PCN-224(Cu) MOFtors presented the best antibacterial performance of 99.4%, which improved by 23.4% compared to its static counterpart and 43.7% compared to static PCN-224(H). The underlying mechanism demonstrates that metal doping could increase the production of reactive oxygen species (ROS) and result in a more positive surface charge under light, which are short-distance effective sterilizing ingredients. Furthermore, the motion of MOFtors appears very important to extend the short-distance effective sterilization and thus synergistically improve the antibacterial performance. This work provides a new idea for preparing and developing light-driven MOFtors with multi-responsive properties.
RESUMO
Biohybrid micromotors are active microscopic agents consisting of biological and synthetic components that are being developed as novel tools for biomedical applications. By capturing motile sperm cells within engineered microstructures, they can be controlled remotely while being propelled forward by the flagellar beat. This makes them an interesting tool for reproductive medicine that can enable minimally invasive sperm cell delivery to the oocyte in vivo, as a treatment for infertility. The generation of sperm-based micromotors in sufficiently large numbers, as they are required in biomedical applications has been challenging, either due to the employed fabrication techniques or the stability of the microstructure-sperm coupling. Here, biohybrid micromotors, which can be assembled in a fast and simple process using magnetic microparticles, are presented. These magnetotactic sperm cells show a high motility and swimming speed and can be transferred between different environments without large detrimental effects on sperm motility and membrane integrity. Furthermore, clusters of micromotors are assembled magnetically and visualized using dual ultrasound (US)/photoacoustic (PA) imaging. Finally, a protocol for the scaled-up assembly of micromotors and their purification for use in in vitro fertilization (IVF) is presented, bringing them closer to their biomedical implementation.
Assuntos
Motilidade dos Espermatozoides , Espermatozoides , Espermatozoides/fisiologia , Masculino , Motilidade dos Espermatozoides/fisiologia , Técnicas de Reprodução Assistida , Humanos , Magnetismo , AnimaisRESUMO
Detection of biomolecules is essential for patient diagnosis, disease management, and numerous other applications. Recently, nano- and microparticle-based detection has been explored for improving traditional assays by reducing required sample volumes and assay times as well as enhancing tunability. Among these approaches, active particle-based assays that couple particle motion to biomolecule concentration expand assay accessibility through simplified signal outputs. However, most of these approaches require secondary labeling, which complicates workflows and introduces additional points of error. Here, we show a proof-of-concept for a label-free, motion-based biomolecule detection system using electrokinetic active particles. We prepare induced-charge electrophoretic microsensors (ICEMs) for the capture of two model biomolecules, streptavidin and ovalbumin, and show that the specific capture of the biomolecules leads to direct signal transduction through ICEM speed suppression at concentrations as low as 0.1 nM. This work lays the foundation for a new paradigm of rapid, simple, and label-free biomolecule detection using active particles.
Assuntos
Técnicas Biossensoriais , Humanos , EstreptavidinaRESUMO
Micromotors have led to an unprecedented revolution in the field of cargo delivery. Attempts in this area trend toward enriching their structures and improving their functions to promote their further applications. Herein, novel microneedle-motors (MNMs) for active drug delivery through a flexible multimodal microfluidic lithographic approach are presented. The multimodal microfluidics is composed of a co-flow geometry-derived droplet fluid and an active cargo mixed laminar flow in a triangular microchannel. The MNMs with sharp tips and spherical fuel-loading cavities are obtained continuously from microfluidics with the assistance of flow lithography. The structural parameters of the MNMs could be precisely tailored by simply choosing the flow speed or the shape of the photomask. As the actives are mixed into the phase solution during the generation, the resultant MNMs are loaded with cargoes for direct applications without any extra complex operation. Based on these features, it is demonstrated that with sharp tips and autonomous movement, the MNMs can efficiently penetrate the tissue-like substrates, indicating the potential in overcoming physiological barriers for cargo release. These results indicate that the proposed multimodal microfluidic lithographic MNMs are valuable for practical active cargo delivery in biomedical and other relative areas.
Assuntos
Sistemas de Liberação de Medicamentos , Microfluídica , Sistemas de Liberação de Medicamentos/métodosRESUMO
Analogous to photosynthetic systems, photoactive semiconductor-based micro/nanoswimmers display biomimetic features that enable unique light harvesting and energy conversion functions and interactions with their surroundings. However, these artificial swimmers are usually non-selective and provide ineffective target recognition, resulting in poor surface analyte binding that affects the overall reactivity and motion efficiency. Here, the surface engineering of light-driven BiVO4 microswimmers by molecular imprinting polymerization is presented. After embedding surface recognition sites, the modified microswimmers can self-propel in a solution of a target molecule, without requiring toxic fuels, and degrade the target selectively in a pollutant mixture. These findings show that optimizing the design of semiconductor-based microswimmers with specific target recognition cavities on their surface is a promising strategy to achieve selective capture and degradation of organic pollutants, which is otherwise impossible because of the non-selective behavior of photogenerated reactive radicals. Moreover, this study provides a unique strategy to enhance the motion capabilities of single-component photocatalytic microswimmers in a specific chemical environment.
RESUMO
H2 O2 -fueled micromotors are state-of-the-art mobile microreactors in environmental remediation. In this work, a magnetic FeOx @MnO2 @SiO2 micromotor with multi-functions is designed and demonstrated its catalytic performance in H2 O2 /peroxymonosulfate (PMS) activation for simultaneously sustained motion and organic degradation. Moreover, this work reveals the correlations between catalytic efficiency and motion behavior/mechanism. The inner magnetic FeOx nanoellipsoids primarily trigger radical species (⢠OH and O2 â¢- ) to attack organics via Fenton-like reactions. The coated MnO2 layers on FeOx surface are responsible for decomposing H2 O2 into O2 bubbles to provide a propelling torque in the solution and generating SO4 â¢- and ⢠OH for organic degradation. The outer SiO2 microcapsules with a hollow head and tail result in an asymmetrical Janus structure for the motion, driven by O2 bubbles ejecting from the inner cavity via the opening tail. Intriguingly, PMS adjusts the local environment to control over-violent O2 formation from H2 O2 decomposition by occupying the Mn sites via inter-sphere interactions and enhances organic removal due to the strengthened contacts and Fenton-like reactions between inner FeOx and peroxides within the microreactor. The findings will advance the design of functional micromotors and the knowledge of micromotor-based remediation with controlled motion and high-efficiency oxidation using multiple peroxides.
RESUMO
Prostate cancer is the most commonly diagnosed tumor disease in men, and its treatment is still a big challenge in standard oncology therapy. Magnetically actuated microrobots represent the most promising technology in modern nanomedicine, offering the advantage of wireless guidance, effective cell penetration, and non-invasive actuation. Here, new biodegradable magnetically actuated zinc/cystine-based microrobots for in situ treatment of prostate cancer cells are reported. The microrobots are fabricated via metal-ion-mediated self-assembly of the amino acid cystine encapsulating superparamagnetic Fe3 O4 nanoparticles (NPs) during the synthesis, which allows their precise manipulation by a rotating magnetic field. Inside the cells, the typical enzymatic reducing environment favors the disassembly of the aminoacidic chemical structure due to the cleavage of cystine disulfide bonds and disruption of non-covalent interactions with the metal ions, as demonstrated by in vitro experiments with reduced nicotinamide adenine dinucleotide (NADH). In this way, the cystine microrobots served for site-specific delivery of Zn2+ ions responsible for tumor cell killing via a "Trojan horse effect". This work presents a new concept of cell internalization exploiting robotic systems' self-degradation, proposing a step forward in non-invasive cancer therapy.
Assuntos
Cistina , Neoplasias da Próstata , Masculino , Humanos , ZincoRESUMO
Micromotors hold great promise for extensive practical applications such as those in biomedical domains and reservoir exploration. However, insufficient propulsion of the micromotor limits its application in crossing biological barriers and breaking reservoir boundaries. In this study, an ultrafast microbullet based on laser cavitation that can utilize the energy of a cavitation bubble and realize its own hurtling motion is reported. The experiments are performed using high-speed photography. A boundary integral method is adopted to reveal the motion mechanism of a polystyrene (PS)/magnetic nanoparticle (MNP) microbullet under the action of laser cavitation. Furthermore, the influence of certain factors (including laser intensity, microbullet size, and ambient temperature) on the motion of the microbullet was explored. For the PS/MNP microbullet driven by laser cavitation, the instantaneous velocity obtained can reach 5.23 m s-1 . This strategy of driving the PS/MNP microbullet provides strong penetration ability and targeted motion. It is believed that the reported propulsion mechanism opens up new possibilities for micromotors in a wide range of engineering applications.
RESUMO
Microplastics, which comprise one of the omnipresent threats to human health, are diverse in shape and composition. Their negative impacts on human and ecosystem health provide ample incentive to design and execute strategies to trap and degrade diversely structured microplastics, especially from water. This work demonstrates the fabrication of single-component TiO2 superstructured microrobots to photo-trap and photo-fragment microplastics. In a single reaction, rod-like microrobots diverse in shape and with multiple trapping sites, are fabricated to exploit the asymmetry of the microrobotic system advantageous for propulsion. The microrobots work synergistically to photo-catalytically trap and fragment microplastics in water in a coordinated fashion. Hence, a microrobotic model of "unity in diversity" is demonstrated here for the phototrapping and photofragmentation of microplastics. During light irradiation and subsequent photocatalysis, the surface morphology of microrobots transformed into porous flower-like networks that trap microplastics for subsequent degradation. This reconfigurable microrobotic technology represents a significant step forward in the efforts to degrade microplastics.
RESUMO
In the case of macromolecules and poorly permeable drugs, oral drug delivery features low bioavailability and low absorption across the intestinal wall. Intestinal absorption can be improved if the drug formulation could be transported close to the epithelium. To achieve this, a cascade delivery device comprising Magnesium-based Janus micromotors (MMs) nesting inside a microscale containers (MCs) has been conceptualized. The device aims at facilitating targeted drug delivery mediated by MMs that can lodge inside the intestinal mucosa. Loading MMs into MCs can potentially enhance drug absorption through increased proximity and unidirectional release. The MMs will be provided with optimal conditions for ejection into any residual mucus layer that the MCs have not penetrated. MMS confined inside MCs propel faster in the mucus environment as compared to non-confined MMs. Upon contact with a suitable fuel, the MM-loaded MC itself can also move. An in vitro study shows fast release profiles and linear motion properties in porcine intestinal mucus compared to more complex motion in aqueous media. The concept of dual-acting cascade devices holds great potential in applications where proximity to epithelium and deep mucus penetration are needed.
Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Suínos , Administração Oral , Intestinos , Mucosa Intestinal , Preparações Farmacêuticas , Muco , Portadores de FármacosRESUMO
In vitro epidermis models are important to evaluate and study disease progression and possible dermal drug delivery. An in vitro epidermis model using floating paper chips as a scaffold for proliferation and differentiation of primary human keratinocytes is reported. The formation of the four main layers of the epidermis (i.e., basal, spinosum, granulose, and cornified layers) is confirmed. The development of a cornified layer and the tight junction formation are evaluated as well as the alterations of organelles during the differentiation process. Further, this in vitro model is used to assess keratinocyte migration. Finally, magnetic micromotors are assembled, and their ability to aid cell migration on paper chips is confirmed when a static magnetic field is present. Taken together, this attempt to combine bottom-up synthetic biology with dermatology offers interesting opportunities for studying skin disease pathologies and evaluate possible treatments.
Assuntos
Epiderme , Queratinócitos , Humanos , Pele , Células Epidérmicas , Movimento Celular , Diferenciação CelularRESUMO
In viscous fluids, motile microentities such as bacteria or artificial swimmers often display different transport modes than macroscopic ones. A current challenge in the field aims at using friction asymmetry to steer the motion of microscopic particles. Here we show that lithographically shaped magnetic microtriangles undergo a series of complex transport modes when driven by a precessing magnetic field, including a surfing-like drift close to the bottom plane. In this regime, we exploit the triangle asymmetric shape to obtain a transversal drift which is later used to transport the microtriangle in any direction along the plane. We explain this friction-induced anisotropic sliding with a minimal numerical model capable to reproduce the experimental results. Due to the flexibility offered by soft-lithographic sculpturing, our method to guide anisotropic-shaped magnetic microcomposites can be potentially extended to many other field responsive structures operating in fluid media.
Assuntos
Campos Magnéticos , Magnetismo , Anisotropia , Fricção , Movimento (Física)RESUMO
Antibiotics are antimicrobial substances that can be used for preventive and therapeutic purposes in humans and animals. Their overdose usage has led to uncontrolled release to the environment, contributing significantly to the development of antimicrobial resistance phenomena. Here, enzyme-immobilized self-propelled zinc oxide (ZnO) microrobots are proposed to effectively target and degrade the released antibiotics in water bodies. Specifically, the morphology of the microrobots is tailored via the incorporation of Au during the synthetic process to lead the light-controlled motion into having on/off switching abilities. The microrobots are further modified with laccase enzyme by physical adsorption, and the immobilization process is confirmed by enzymatic activity measurements. Oxytetracycline (OTC) is used as a model of veterinary antibiotics to investigate the enzyme-immobilized microrobots for their removal capacities. The results demonstrate that the presence of laccase on the microrobot surfaces can enhance the removal of antibiotics via oxidation. This concept for immobilizing enzymes on self-propelled light-driven microrobots leads to the effective removal of the released antibiotics from water bodies with an environmentally friendly strategy.
Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Óxido de Zinco , Antibacterianos , Humanos , Lacase/metabolismo , ÁguaRESUMO
The presence of organic pollutants in the environment is a global threat to human health and ecosystems due to their bioaccumulation and long-term persistence. Hereby a micromotor-in-sponge concept is presented that aims not only at pollutant removal, but towards an efficient in situ degradation by exploiting the synergy between the sponge hydrophobic nature and the rapid pollutant degradation promoted by the cobalt-ferrite (CFO) micromotors embedded at the sponge's core. Such a platform allows the use of extremely low fuel concentration (0.13% H2 O2 ), as well as its reusability and easy recovery. Moreover, the authors demonstrate an efficient multicycle pollutant degradation and treatment of large volumes (1 L in 15 min) by using multiple sponges. Such a fast degradation process is due to the CFO bubble-propulsion motion mechanism, which induces both an enhanced fluid mixing within the sponge and an outward flow that allows a rapid fluid exchange. Also, the magnetic control of the system is demonstrated, guiding the sponge position during the degradation process. The micromotor-in-sponge configuration can be extrapolated to other catalytic micromotors, establishing an alternative platform for an easier implementation and recovery of micromotors in real environmental applications.
Assuntos
Poluentes Ambientais , Catálise , Ecossistema , HumanosRESUMO
Herein the effective electrical propulsion, cargo trapping, and transport capabilities of microbowl-shaped Janus particles (JPs) are demonstrated and evaluated. These active JPs are made by deposition of Au and Ti layers onto sacrificial spherical polystyrene particles, followed by oxidation of the Ti to TiO2 . In contrast to the commonly studied spherical JP, the dual broken symmetry of both geometrical and electrical properties of the microbowl renders a strong dependence of its mobility and cargo loading on the order of the layering of Au and TiO2 . Specifically, an opposite direction of motion is obtained for interchanged layers of Au and TiO2 , using only electrical propulsion as the sole mechanism of motion. The concave side of the microbowl exhibits a negative dielectrophoretic trap of large size wherein trapped cargo is protected from hydrodynamic shearing, leading to an enhanced cargo loading capacity compared to that obtained using common spherical JP. Such enhanced cargo capability of the microbowl along with the ease of engineering it by interchanging the order of the layers are very attractive for future in vitro biological and biomedical applications.
Assuntos
Nanopartículas Multifuncionais , Eletricidade , Hidrodinâmica , Movimento (Física) , PoliestirenosRESUMO
Active particles are known to exhibit collective behavior and induce structure in a variety of soft-matter systems. However, many naturally occurring complex fluids are mixtures of active and passive components. The authors examine how activity induces organization in such multi-component systems. Mixtures of passive colloids and colloidal micromotors are investigated and it is observed that even a small fraction of active particles induces reorganization of the passive components in an intriguing series of phenomena. Experimental observations are combined with large-scale simulations that explicitly resolve the near- and far-field effects of the hydrodynamic flow and simultaneously accurately treat the fluid-colloid interfaces. It is demonstrated that neither conventional molecular dynamics simulations nor the reduction of hydrodynamic effects to phoretic attractions can explain the observed phenomena, which originate from the flow field that is generated by the active colloids and subsequently modified by the aggregating passive units. These findings not only offer insight into the organization of biological or synthetic active-passive mixtures, but also open avenues to controlling the behavior of passive building blocks by means of small amounts of active particles.
Assuntos
Coloides , Hidrodinâmica , Coloides/químicaRESUMO
Urinary-based infections affect millions of people worldwide. Such bacterial infections are mainly caused by Escherichia coli (E. coli) biofilm formation in the bladder and/or urinary catheters. Herein, the authors present a hybrid enzyme/photocatalytic microrobot, based on urease-immobilized TiO2 /CdS nanotube bundles, that can swim in urea as a biocompatible fuel and respond to visible light. Upon illumination for 2 h, these microrobots are able to remove almost 90% of bacterial biofilm, due to the generation of reactive radicals, while bare TiO2 /CdS photocatalysts (non-motile) or urease-coated microrobots in the dark do not show any toxic effect. These results indicate a synergistic effect between the self-propulsion provided by the enzyme and the photocatalytic activity induced under light stimuli. This work provides a photo-biocatalytic approach for the design of efficient light-driven microrobots with promising applications in microbiology and biomedicine.
Assuntos
Biofilmes , Escherichia coli , Robótica , Titânio , Catálise , Humanos , Titânio/farmacologia , Ureia/farmacologia , Urease/farmacologiaRESUMO
Hybrid microrobots have recently attracted attention due to their ability to combine different energy sources and/or external stimuli for propulsion and performing desired tasks. Despite progresses in the past, on-demand speed modulation for hybrid microrobots has not been analyzed in detail. Herein, the influence of surface properties and crystallite size on the propulsion mechanism of Pt/TiO2 chemical/light-driven hybrid microrobots is investigated. The morphology of urchin-like Pt/TiO2 microrobots leads to "on-the-fly" optical brake behavior under UV irradiation. In contrast, smooth Pt/TiO2 microrobots demonstrate accelerated motion in the same conditions. The comparison between two types of microrobots also indicates the significance of a high surface area and a high crystallite size to increase their speed. The results demonstrate the profound impact of surface features for next-generation smart micro/nanorobots with on-demand reaction capability in dynamically changing environments.
Assuntos
TitânioRESUMO
Water contamination resulting from heavy metal ions (HMIs) poses a severe threat to public health and the ecosystem. Attempts are tending to develop functional materials to realize efficient and intelligent adsorption of HMIs. Herein, self-propelled structural color cylindrical micromotors (SCCMs) with reversible HMIs adsorption capacity and self-reporting property are presented. The SCCMs are fabricated by using platinum nanoparticles (Pt NPs) tagged responsive hydrogel of carboxymethyl chitosan (CMC) and polyacrylamide (PAM) to asymmetrically replicate tubular colloidal crystal templates (TCCTs). Owing to the self-propelled motion of the SCCMs, the enhancive ion-motor interactions bring significantly improved decontamination efficiency. Moreover, it is demonstrated that the SCCMs can realize quick and naked-eye-visible self-reporting during the adsorption/desorption process based on their responsive structure color variation and superior adsorption capacity. Thus, it is anticipated that such intelligent SCCMs can significantly facilitate the evolution of sensing assays and diverse environmental fields.