Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
J Virol ; 98(7): e0069724, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38916400

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is an important pathogen of largemouth bass. Despite extensive research, the functional receptors of MSRV remained unknown. This study identified the host protein, laminin receptor (LamR), as a cellular receptor facilitating MSRV entry into host cells. Our results demonstrated that LamR directly interacts with MSRV G protein, playing a pivotal role in the attachment and internalization processes of MSRV. Knockdown of LamR with siRNA, blocking cells with LamR antibody, or incubating MSRV virions with soluble LamR protein significantly reduced MSRV entry. Notably, we found that LamR mediated MSRV entry via clathrin-mediated endocytosis. Additionally, our findings revealed that MSRV G and LamR were internalized into cells and co-localized in the early and late endosomes. These findings highlight the significance of LamR as a cellular receptor facilitating MSRV binding and entry into target cells through interaction with the MSRV G protein. IMPORTANCE: Despite the serious epidemic caused by Micropterus salmoides rhabdovirus (MSRV) in largemouth bass, the precise mechanism by which it invades host cells remains unclear. Here, we determined that laminin receptor (LamR) is a novel target of MSRV, that interacts with its G protein and is involved in viral attachment and internalization, transporting with MSRV together in early and late endosomes. This is the first report demonstrating that LamR is a cellular receptor in the MSRV life cycle, thus contributing new insights into host-pathogen interactions.


Assuntos
Doenças dos Peixes , Receptores de Laminina , Rhabdoviridae , Internalização do Vírus , Animais , Receptores de Laminina/metabolismo , Rhabdoviridae/metabolismo , Rhabdoviridae/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Bass/virologia , Bass/metabolismo , Receptores Virais/metabolismo , Infecções por Rhabdoviridae/virologia , Infecções por Rhabdoviridae/metabolismo , Endocitose
2.
J Virol ; 97(10): e0071423, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37735152

RESUMO

IMPORTANCE: Although Micropterus salmoides rhabdovirus (MSRV) causes serious fish epidemics worldwide, the detailed mechanism of MSRV entry into host cells remains unknown. Here, we comprehensively investigated the mechanism of MSRV entry into epithelioma papulosum cyprinid (EPC) cells. This study demonstrated that MSRV enters EPC cells via a low pH, dynamin-dependent, microtubule-dependent, and clathrin-mediated endocytosis. Subsequently, MSRV transports from early endosomes to late endosomes and further into lysosomes in a microtubule-dependent manner. The characterization of MSRV entry will further advance the understanding of rhabdovirus cellular entry pathways and provide novel targets for antiviral drug against MSRV infection.


Assuntos
Bass , Rhabdoviridae , Animais , Rhabdoviridae/metabolismo , Bass/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Dinaminas/metabolismo , Microtúbulos/metabolismo , Clatrina/metabolismo , Concentração de Íons de Hidrogênio , Internalização do Vírus
3.
Fish Shellfish Immunol ; 154: 109976, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39427835

RESUMO

The largemouth bass (Micropterus salmoides) is native to North America and has now become a crucial economic species in aquaculture. With the rapid development of high-density intensive farming models, the continuous emergence and spread of diseases pose significant challenges to the sustainable development of largemouth bass aquaculture, including Micropterus salmoides rhabdovirus (MSRV), largemouth bass virus (LMBV), Nocardia spp. and Aeromonas spp. Here, we provide a comprehensive overview of the latest research progress on common diseases of largemouth bass, including pathogen isolation and identification, pathological characteristics, morphological features, epidemiological characteristics, pathogen-host interactions, detection and diagnosis, vaccines, and other control technologies. This information will enhance a more comprehensive understanding of the occurrence of diseases in largemouth bass, and provide insights into future research directions, facilitating more effective disease prevention and control. The collaborative progress among rapid detection technology, the interaction mechanism between pathogen and host, and prevention and control techniques will be the curial to achieving green prevention and control of largemouth bass disease and healthy aquaculture in future.

4.
Fish Shellfish Immunol ; 144: 109284, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092092

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is a significant viral pathogen in largemouth bass aquaculture, causing substantial annual economic losses. However, effective prevention methods remain elusive for various reasons. Medicinal plant extracts have emerged as valuable tools in preventing and managing aquatic animal diseases. Thus, the search for immunomodulators with straightforward, safe structures in plant extracts is imperative to ensure the continued health and growth of the largemouth bass industry. In our research, we employed epithelioma papulosum cyprinid (EPC) cells and largemouth bass as models to assess the anti-MSRV properties and immunomodulatory effects of ten plant-derived bioactive compounds. Among them, rhein demonstrated noteworthy potential, exhibiting a 75 % reduction in viral replication in vitro at a concentration of 50 mg/L. Furthermore, rhein pre-treatment significantly inhibited MSRV genome replication in EPC cells, with the highest inhibition rate reaching 64.8 % after 24 h, underscoring rhein's preventive impact against MSRV. Likewise, rhein displayed remarkable therapeutic effects on EPC cells during the early stages of MSRV infection, achieving a maximum inhibition rate of 85.6 % in viral replication. Subsequent investigations unveiled that rhein, with its consistent activity, effectively mitigated cytopathic effects (CPE) and nuclear damage induced by MSRV infection. Moreover, it restrained mitochondrial membrane depolarization and reduced the apoptosis rate by 38.8 %. In vivo experiments reinforced these findings, demonstrating that intraperitoneal injection of rhein enhanced the expression levels of immune related genes in multiple organs, hindered virus replication, and curtailed the mortality rate of MSRV-infected largemouth bass by 29 %. Collectively, our study endorses the utility of rhein as an immunomodulator to combat MSRV infections in largemouth bass. This not only underscores the potential of rhein as a broad-spectrum antiviral and means to bolster the immune response but also highlights the role of apoptosis as an immunological marker, making it an invaluable addition to the armamentarium against aquatic viral pathogens.


Assuntos
Bass , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Fatores Imunológicos/metabolismo , Poder Psicológico , Doenças dos Peixes/prevenção & controle
5.
Fish Shellfish Immunol ; : 109984, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39461395

RESUMO

CC chemokine receptors (CCRs), the numbers of the G protein-coupled receptor (GPCR) superfamily, had crucial roles in treating infection, inflammation, and tissue damage by binding to their ligands. In this study, five fish-specific CCRs, namely CCR4La, CCR4Lc, CCR12a1, CCR12a2, and CCR12b, were identified in largemouth bass (Micropterus salmoides). The correction of nomenclatures of these CCRs were confirmed by phylogenetic analysis, structural analysis and genomic synteny analysis. Following 1×106 CFU/mL and 1×107 CFU/mL Edwardsiella piscicida infection, these five CCRs were significantly induced in spleen of largemouth bass, indicating their important roles in the immune response against bacterial infection. Selection pressure analysis revealed that CCR4La, CCR4Lc, CCR12a1, and CCR12a2 underwent negative selection pressure, whereas CCR12b experienced positive selection pressure. Robust selection site detection methods identified that positive selected sites of CCR4La, CCR4Lc, CCR12a1, and CCR12a2 mainly distributed in their extracellular regions, which involved in ligand binding and pathogen interaction. Similarly, the positive selected sites of CCR12b were also located in its extracellular regions. The accuracy of the pressure selected sites were also validated by molecular docking analysis. The potential ligands for these five CCRs were identified by molecular docking analysis, with finding that CCL3 and CCL5 might be the ligands of largemouth bass CCR4La/Lc, and CCL5, CCL8, CCL7, CCL13 and CCL26 might be that of largemouth bass CCR12a1/a2/b. Our results provided basis for elucidating the functions of chemokine-receptor complex in largemouth bass.

6.
Fish Shellfish Immunol ; 154: 109911, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293705

RESUMO

Zinc is essential for normal growth and reproduction in all animals and plays a crucial role in many biological processes. The present study aimed to compare the intervention effects of zinc on intestinal health in a high lipid diet or high starch diet. Seven iso-nitrogenous (∼520 g kg-1) diets were formulated containing a positive control diet (115 g kg-1 lipid + 115 g kg-1 starch + 20 mg kg-1 Zn), three high starch diets (HS, 166 g kg-1 starch) and three high lipid diets (HL, 182 g kg-1 lipid), with 0 (HS-LZn, HL-LZn), 20 (HS-MZn, HL-MZn) and 150 (HS-HZn, HL-HZn) mg kg-1 Zn being supplemented. High starch diet and high lipid diet promoted feed efficiency, as evidenced by the lower feed conversion ratio. Three-way factorial ANOVA analysis showed high starch diet (166 g kg-1) significantly decreased final body weight and weight gain compared to the normal starch level (115 g kg-1). Diamine oxidase in serum significantly increased in diets HS-LZn and HL-LZn. In addition, distal intestinal mucosal fold damage and inflammatory infiltration were observed in the HS-LZn, HS-HZn, HL-LZn and HL-HZn groups. Fish fed HL diets (HL-LZn, HL-MZn, HL-HZn) showed lower expressions of claudin 5 and claudin 34, and higher IgD and IgM. Diets HL-LZn and HL-MZn significantly up-regulated C4 and C7. Proinflammatory cytokines including il8, il1ß and tnfα significantly up-regulated in diet HL-LZn, even higher than the HS-LZn. Intestinal microbial composition indicated the abundance of Cetobacterium in HL-LZn was significantly higher than the control and HL-MZn diets. Similarly, LEfSe showed that Cetobacterium (P = 0.039) significantly enriched in the HL-LZn group. This study clarified high energy diet induced intestinal damage, which can be alleviated by zinc.

7.
Fish Shellfish Immunol ; 151: 109750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969153

RESUMO

The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg/kg. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1ß/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.


Assuntos
Ração Animal , Bass , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Glucosídeos , Fenóis , Animais , Bass/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Glucosídeos/administração & dosagem , Glucosídeos/farmacologia , Fenóis/administração & dosagem , Fenóis/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Imunidade Inata/efeitos dos fármacos , Relação Dose-Resposta a Droga , Distribuição Aleatória
8.
Fish Shellfish Immunol ; 149: 109531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604479

RESUMO

In this study, we present the first cloning and identification of perforin (MsPRF1) in largemouth bass (Micropterus salmoides). The full-length cDNA of MsPRF1 spans 1572 base pairs, encoding a 58.88 kDa protein consisting of 523 amino acids. Notably, the protein contains MACPF and C2 structural domains. To evaluate the expression levels of MsPRF1 in various healthy largemouth bass tissues, real-time quantitative PCR was employed, revealing the highest expression in the liver and gut. After the largemouth bass were infected by Nocardia seriolae, the mRNA levels of MsPRF1 generally increased within 48 h. Remarkably, the recombinant protein MsPRF1 exhibits inhibitory effects against both Gram-negative and Gram-positive bacteria. Additionally, the largemouth bass showed a higher survival rate in the N. seriolae challenge following the intraperitoneal injection of rMsPRF1, with observed reductions in the tissue bacterial loads. Moreover, rMsPRF1 demonstrated a significant impact on the phagocytic and bactericidal activities of largemouth bass MO/MΦ cells, concurrently upregulating the expression of pro-inflammatory factors. These results demonstrate that MsPRF1 has a potential role in the immune response of largemouth bass against N. seriolae infection.


Assuntos
Sequência de Aminoácidos , Bass , Doenças dos Peixes , Proteínas de Peixes , Nocardia , Perforina , Filogenia , Animais , Bass/imunologia , Bass/genética , Doenças dos Peixes/imunologia , Perforina/genética , Perforina/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Nocardia/imunologia , Nocardiose/veterinária , Nocardiose/imunologia , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
9.
Fish Shellfish Immunol ; 153: 109870, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218416

RESUMO

Largemouth bass ranavirus (LMBV) seriously affects the development of largemouth bass (Micropterus salmoides) industry and causes huge economic losses. Oral vaccine can be a promising method for viral disease precaution. In this study, MCP2α was identified as a valuable epitope region superior to MCP and MCP2 of LMBV by neutralizing antibody experiments. Then, recombinant Lactobacillus casei expressing the fusion protein MCP2αC (MCP2α as antigen, C represents flagellin C from Aeromonas hydrophila as adjuvant) on surface was constructed and verified. Further, PLA microsphere vaccine loading recombinant MCP2αC L. casei was prepared. The PLA microspheres vaccine were observed by scanning electron microscopy and showed a smooth, regular spherical surface with a particle size distribution between 100 and 200 µm. Furthermore, we evaluated the tolerance of PLA-MCP2αC vaccine in simulated gastric fluid and simulated intestinal fluid, and the results showed that PLA-MCP2αC can effectively resist the gastrointestinal environment. Moreover, the protective effect of PLA-MCP2αC against LMBV was evaluated after oral immunization and LMBV challenge. The results showed that PLA-MCP2αC effectively up-regulated the activity of serum biochemical enzymes (T-SOD, T-AOC, LZM, complement C3) and induced the mRNA expression of representative immune genes (IL-1ß, TNF-α, IFN-γ, MHC-IIα, Mx, IgM) in spleen and head kidney tissues. The survival rate of largemouth bass vaccinated with PLA-MCP2αC increased from 24 % to 68 %. Meanwhile, PLA-MCP2αC inhibited the LMBV burden in spleen, head kidney and liver tissues and attenuated tissue damage in spleen. These results suggested that PLA-MCP2αC can be used as a candidate oral vaccine against LMBV infection in aquaculture.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Lacticaseibacillus casei , Microesferas , Animais , Bass/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Lacticaseibacillus casei/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Poliésteres/administração & dosagem , Iridoviridae
10.
Fish Shellfish Immunol ; 149: 109593, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697374

RESUMO

A type of fermented bile acids (FBAs) has been produced through a biological method, and its effects on growth performance, metabolism, and intestinal microbiota in largemouth bass were investigated. The results demonstrated that incorporating 0.03 %-0.05 % FBAs diet could improve the final weight, weight gain and specific growth rate, and decrease the feed conversion ratio. Dietary FBAs did not significantly affect the levels of high-density lipoprotein, low-density lipoprotein, and triglycerides, but decreased the activities of α-amylase in most groups. Adding FBAs to the diet significantly increased the integrity of the microscopic structure of the intestine, thickened the muscular layer of the intestine, and notably enhanced its intestinal barrier function. The addition of FBAs to the diet increased the diversity of the gut microbiota in largemouth bass. At the phylum level, there was an increase in the abundance of Proteobacteria, Firmicutes, Tenericutes and Cyanobacteria and a significant decrease in Actinobacteria and Bacteroidetes. At the genus level, the relative abundance of beneficial bacteria Mycoplasma in the GN6 group and Coprococcus in the GN4 group significantly increased, while the pathogenic Enhydrobacter was inhibited. Meanwhile, the highest levels of AKP and ACP were observed in the groups treated with 0.03 % FBAs, while the highest levels of TNF-α and IL-10 were detected in the group treated with 0.04 % FBAs. Additionally, the highest levels of IL-1ß, IL-8T, GF-ß, IGF-1, and IFN-γ were noted in the group treated with 0.06 % FBAs. These results suggested that dietary FBAs improved growth performance and intestinal wall health by altering lipid metabolic profiles and intestinal microbiota in largemouth bass.


Assuntos
Ração Animal , Bass , Ácidos e Sais Biliares , Dieta , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Ração Animal/análise , Bass/crescimento & desenvolvimento , Bass/imunologia , Dieta/veterinária , Intestinos/microbiologia , Fermentação , Metaboloma , Suplementos Nutricionais/análise , Distribuição Aleatória
11.
Fish Shellfish Immunol ; 151: 109734, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950759

RESUMO

Toll-like receptors (TLRs) are pattern recognition receptors that trigger host immune responses against various pathogens by detecting evolutionarily conserved pathogen-associated molecular patterns (PAMPs). TLR21 is a member of the Toll-like receptor family, and emerging data suggest that it recognises unmethylated CpG DNA and is considered a functional homologue of mammalian TLR9. However, little is known regarding the role of TLR21 in the fish immune response. In the present study, we isolated the cDNA sequence of TLR21 from the largemouth bass (Micropterus salmoides) and termed it MsTLR21. The MsTLR21 gene contained an open reading frame (ORF) of 2931 bp and encodes a polypeptide of 976 amino acids. The predicted MsTLR21 protein has two conserved domains, a conserved leucine-rich repeats (LRR) domain and a C-terminal Toll-interleukin (IL) receptor (TIR) domain, similar to those of other fish and mammals. In healthy largemouth bass, the TLR21 transcript was broadly expressed in all the examined tissues, with the highest expression levels in the gills. After challenge with Nocardia seriolae and polyinosinic polycytidylic acid (Poly[I:C]), the expression of TLR21 mRNA was upregulated or downregulated in all tissues tested. Overexpression of TLR21 in 293T cells showed that it has a positive regulatory effect on nuclear factor-kappaB (NF-κB) and interferons-ß (IFN-ß) activity. Subcellular localisation analysis showed that TLR21 was expressed in the cytoplasm. We performed pull-down assays and determined that TLR21 did not interact with myeloid differentiation primary response gene 88 (Myd88); however, it interacted with TIR domain-containing adaptor inducing interferon-ß (TRIF). Taken together, these findings suggest that MsTLR21 plays important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos , Bass , Doenças dos Peixes , Proteínas de Peixes , NF-kappa B , Filogenia , Animais , Bass/imunologia , Bass/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Doenças dos Peixes/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transdução de Sinais/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/química , Perfilação da Expressão Gênica/veterinária , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Sequência de Bases
12.
Fish Shellfish Immunol ; 145: 109322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128679

RESUMO

Nocardia seriolae is a severe bacterial pathogen that has seriously affected the development of aquaculture industry. Largemouth bass (Micropterus salmoides) is a commercially significant freshwater fish that suffers a variety of environmental threats, including bacterial pathogens. However, the immune responses and metabolic alterations of largemouth bass to N. seriolae infection remain largely unclear. We discovered that N. seriolae caused pathological alterations in largemouth bass and shifted the transcript of immune-related and apoptotic genes in head kidney after infection. To answer the aforementioned question, a combined transcriptome and metabolome analysis was employed to explore the alterations in genes, metabolites, and metabolic pathways in largemouth bass following bacterial infection. A total of 3579 genes and 1929 metabolites are significant differentially changed in the head kidney post infection. In response to N. seriolae infection, host modifies the PI3K-Akt signaling pathway, TCA cycle, glycolysis, and amino acid metabolism. The integrated analysis of transcriptome and metabolome suggested that with the arginine metabolism pathway as the core, multiple biomarkers (arg gene, arginine) are involved in the antibacterial and immune functions of largemouth bass. Thus, we hypothesized that arginine plays a crucial role in the immune responses of largemouth bass against N. seriolae infection, and increasing arginine levels suitably is beneficial for the host against bacterial infection. Our results shed light on the regulatory mechanism of largemouth bass resistance to N. seriolae infection and contributed to the development of more effective N. seriolae resistance strategies.


Assuntos
Infecções Bacterianas , Bass , Nocardiose , Nocardia , Animais , Transcriptoma , Fosfatidilinositol 3-Quinases/genética , Metaboloma , Arginina
13.
Fish Shellfish Immunol ; 145: 109348, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163493

RESUMO

Galectins are lectins that bind to ß-galactose and are widely expressed in immune system tissues, playing pivotal roles in innate immunity through their conserved carbohydrate-recognition domains (CRDs). In this present investigation, a tandem-repeat galectin was discovered in the largemouth bass, Micropterus salmoides (designated as MsGal-9). The open reading frame of MsGal-9 encodes two CRDs, each containing two consensus motifs that are essential for ligand binding. MsGal-9 is expressed in various tissues of the largemouth bass, with particularly high expression levels in the liver and spleen. The full-length form of MsGal-9, as well as the N-terminal (MsGal-9-N) and C-terminal (MsGal-9-C) CRDs, were individually recombined. Their ability for nonself recognition was studied. The three recombinant proteins were able to bind to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS), with MsGal-9 displaying the highest binding activity. Furthermore, rMsGal-9-N exhibited higher binding activity towards GLU in comparison to rMsGal-9-C. Further investigations revealed that the full-length rMsGal-9 could significantly bind to Gram-positive bacteria, Gram-negative bacteria, and fungi, while rMsGal-9-C specifically bound to Escherichia coli. However, rMsGal-9-N did not exhibit significant binding activity towards any microbes. These findings indicate that MsGal-9 requires both CRDs to cooperate in order to fulfill its nonself recognition function. All three recombinant proteins demonstrated agglutination activity towards various microbes, with MsGal-9 and MsGal-9-N displaying a similar broad binding spectrum, while MsGal-9-C agglutinated three types of bacteria. Moreover, both MsGal-9 and MsGal-9-N were capable of coagulating largemouth bass red blood cells, whereas MsGal-9-C lacked this ability. However, MsGal-9-C played a significant role in enhancing the encapsulation of leukocytes in comparison to MsGal-9-N. All three proteins acted as potential damage-associated molecular patterns (DAMPs), inducing apoptosis in leukocytes.


Assuntos
Bass , Galectinas , Animais , Galectinas/genética , Bass/metabolismo , Sequência de Aminoácidos , Alinhamento de Sequência , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Inata , Proteínas Recombinantes , Carboidratos , Filogenia
14.
Fish Shellfish Immunol ; 145: 109364, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199264

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is one of the main pathogens of largemouth bass, leading to serious economic losses. The G protein, as the only envelope protein present on the surface of MSRV virion, contains immune-related antigenic determinants, thereby becoming the primary target for the design of MSRV vaccines. Here, we displayed the G protein on the surface of yeast cells (named EBY100/pYD1-G) and conducted a preliminary assessment of the protective efficacy of the recombinant yeast vaccine. Upon oral vaccination, a robust immune response was observed in systemic and mucosal tissue. Remarkably, following the MSRV challenge, the relative percent survival of EBY100/pYD1-G treated largemouth bass significantly increased to 66.7 %. In addition, oral administration inhibited viral replication and alleviated the pathological symptoms of MSRV-infected largemouth bass. These results suggest that EBY100/pYD1-G could be used as a potential oral vaccine against MSRV infection.


Assuntos
Bass , Doenças dos Peixes , Rhabdoviridae , Animais , Saccharomyces cerevisiae , Vacinação , Proteínas Fúngicas , Vacinas Sintéticas
15.
Fish Shellfish Immunol ; 148: 109465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408547

RESUMO

IL-8 and IL-10 are crucial inflammatory cytokines that participate in defending host cells against infections. To demonstrate the function of the two interleukin genes in largemouth bass (Micropterus salmoides), we initially cloned and identified the cDNA sequences of il-8 and il-10 in largemouth bass, referred to as Msil-8 and Msil-10, respectively. The open reading frame (ORF) of Msil-8 was 324 bp in length, encoding 107 amino acids, while the ORF of Msil-10 consisted of 726 bp and encoded 241 amino acids. Furthermore, the functional domains of the SCY domain in MsIL-8 and the IL-10 family signature motif in MsIL-10 were highly conserved across vertebrates. Additionally, both MsIL-8 and MsIL-10 showed close relationships with M. dolomieu. Constitutive expression of Msil-8 and Msil-10 was observed in various tissues, with the highest level found in the head kidney. Subsequently, largemouth bass were infected with Nocardia seriolae via intraperitoneal injection to gain a further understanding of the function of these two genes. Bacterial loads were initially detected in the foregut, followed by the midgut, hindgut, and liver. The mRNA expression of Msil-8 was significantly down-regulated after infection, especially at 2 days post-infection (DPI), with a similar expression to Msil-10. In contrast, the expression of Msil-8 and Msil-10 was significantly upregulated in the foregut at 14 DPI. Taken together, these results reveal that the function of IL-8 and IL-10 was likely hindered by N. seriolae, which promoted bacterial proliferation and intercellular diffusion.


Assuntos
Bass , Nocardiose , Nocardia , Animais , Bass/genética , Interleucina-8/genética , Interleucina-10/genética , Nocardiose/genética , Nocardiose/veterinária , Aminoácidos
16.
Fish Shellfish Immunol ; 149: 109528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570119

RESUMO

Stimulator of interferon genes (STING) has been demonstrated as a critical mediator in the innate immune response to cytosolic DNA and RNA derived from different pathogens. While the role of Micropterus salmoides STING (MsSTING) in largemouth bass virus is still unknown. In this study, RT-qPCR assay and Western-blot assay showed that the expression levels of MsSTING and its downstream genes were up-regulated after LMBV infection. Pull down experiment proved that a small peptide called Fusion peptide (FP) that previously reported to target to marine and human STING as a selective inhibitor also interacted with MsSTING in vitro. Comparing with the RNA-seq of Largemouth bass infected with LMBV singly, 326 genes were significantly up-regulated and 379 genes were significantly down-regulated in the FP plus LMBV group in which Largemouth bass was treatment with FP before LMBV-challenged. KEGG analysis indicated that the differentially expressed genes (DEGs) were mainly related to signaling transduction, infectious disease viral, immune system and endocrine system. Besides, the survival rate of LMBV-infected largemouth bass was highly decreased following FP treatment. Taken together, our study showed that MsSTING played an important role in immune response against LMBV infection.


Assuntos
Bass , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Bass/imunologia , Bass/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ranavirus/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia
17.
Mol Biol Rep ; 51(1): 470, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551799

RESUMO

BACKGROUND: The genetic improvement in growth and food habit domestication of largemouth bass (Micropterus salmoides) have made breakthroughs in past decades, while the relevant work on disease resistance were rarely carried out. Major histocompatibility complex (MHC) genes, which are well known as their numbers and high polymorphisms, have been used as candidate genes to mine disease-resistant-related molecular markers in many species. METHODS AND RESULTS: In present study, we developed and characterized 40 polymorphic and biallelic InDel markers from the major histocompatibility complex genes of largemouth bass. The minor allele frequency, observed heterozygosity, expected heterozygosity and polymorphic information content of these markers ranged from 0.0556 to 0.5000, 0.1111 to 0.6389, 0.1064 to 0.5070, and 0.0994 to 0.3750, respectively. Three loci deviated significantly from Hardy-Weinberg equilibrium, while linkage disequilibrium existed at none of these loci. CONCLUSION: These InDel markers might provide references for the further correlation analysis and molecular assisted selection of disease resistance in largemouth bass.


Assuntos
Bass , Animais , Bass/genética , Resistência à Doença/genética , Polimorfismo Genético/genética , Frequência do Gene/genética , Complexo Principal de Histocompatibilidade/genética
18.
Gen Comp Endocrinol ; 351: 114480, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401858

RESUMO

Neuropeptide Y is known to be directly or indirectly involved in immune regulation. The immune effects of NPY include immune cell transport, helper T cell differentiation, cytokine secretion, staining and killer cell activity, phagocytosis and production of reactive oxygen species. In this study, we investigated the immunoprotective effect of synthetic NPY on largemouth bass larvae. For the first time, the dose and time effects of NPY injection on largemouth bass was explored, and then Poly I:C and LPS infection was carried out in juvenile largemouth bass, respectively, after the injection of NPY. The results showed that NPY could reduce the inflammatory response by inhibiting the expression of il-1ß, tgf-ß, ifn-γ and other immune factors in head kidney, spleen and brain, and alleviate the immune stress caused by strong inflammatory response in the early stage of infection. Meanwhile, NPY injection ameliorated the intestinal tissue damage caused by infection. This study provides a new way to protect juvenile fish and improve its innate immunity.


Assuntos
Bass , Animais , Bass/genética , Neuropeptídeo Y/farmacologia , Neuropeptídeo Y/metabolismo , Imunidade Inata , Expressão Gênica
19.
J Fish Dis ; 47(2): e13891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990596

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is a significant pathogen that causes high morbidity and mortality in largemouth bass, leading to enormous economic losses for largemouth bass aquaculture in China. The aim of this study was to investigate the efficacy of four disinfectants (potassium permanganate, glutaraldehyde, trichloroisocyanuric acid and povidone iodine) on MSRV, to control the infection and transmission of MSRV in largemouth bass aquaculture. The disinfectants were tested at different concentrations (5, 25, 50, 100 and 500 mg/L) prepared with distilled water for 30 min contact time, and the viral nucleic acid was quantified using qPCR and the infectivity was tested by challenge experiment. Potassium permanganate at 5-500 mg/L, glutaraldehyde at 500 mg/L, trichloroisocyanuric acid at 50-500 mg/L and povidone iodine at 500 mg/L concentration could effectively decrease the virus nucleic acid, and the survival rate of largemouth bass juveniles after challenge experiment increased significantly from 3.7% ± 6.41% to 33.33 ± 11.11% - 100%. Moreover, the minimum effective time of 5 mg/L potassium permanganate was further studied at 2, 5, 10 and 20 min contact time. The viral nucleic acid decreased significantly at 5-20 min exposure time, and the survival rate increased significantly from 7.41% ± 6.41% to 77.78 ± 11.11% - 100%. The median lethal concentration (LC50 ) values of potassium permanganate were 10.64, 6.92 and 3.7 mg/L at 24, 48 and 96 h, respectively. Potassium permanganate could be used for the control of MSRV in the cultivation process; the recommended concentration is 5 mg/L and application time should be less than 24 h. The results could be applied to provide a method to control the infection and transmission of MSRV in water, and improve the health status of largemouth bass.


Assuntos
Bass , Desinfetantes , Doenças dos Peixes , Ácidos Nucleicos , Rhabdoviridae , Animais , Desinfetantes/farmacologia , Glutaral , Permanganato de Potássio , Povidona-Iodo , Doenças dos Peixes/prevenção & controle , Água
20.
J Fish Dis ; : e13948, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558407

RESUMO

Flavobacterium covae (columnaris) is the most detrimental bacterial disease affecting the largemouth bass (Micropterus salmoides Lacépède) aquaculture industry. In the current study, fish received an intraperitoneal injection of either 1× PBS (100 µL), LPS in PBS (100 µL, 10 µg/mL), or F. covae (100 µL, 2.85 × 1011 CFU/mL) to simulate immunological challenges. After 24 h post-injection, liver tissue from the control and treated groups were then collected for transcriptome analysis. Results of the Gene Ontology (GO) and KEGG pathway analyses for the F. covae and LPS-injected groups found differentially expressed genes (DEGs) enriched primarily in toll-like receptors (TLRs), cytokine-cytokine receptors, complement and coagulation cascades, and the PPAR signalling pathways. This suggests that the liver immune system is enhanced by these five combined pathways. Additionally, the DEGs TLR5, MYD88, and IL-1 were significantly upregulated in F. covae and LPS-injected fish compared to the controls, whereas IL-8 was downregulated. The upregulation of TLR5 was unexpected as F. covae lacks flagellin, the protein that binds to TLR5. Additionally, it is unknown whether the TLR5 is upregulated by LPS. Further research into the upregulation of TLR5 is warranted. These results provide insight into immune responses and associated pathways contributing to the immune system in the liver during columnaris infection and induced response to LPS in largemouth bass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA