Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.656
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(43): e2402759121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39413133

RESUMO

Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a method to apply forces to the nucleus of living Caenorhabditis elegans embryos to measure the force generated inside the cell. We used a centrifuge polarizing microscope to apply centrifugal force and orientation-independent differential interference contrast microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~12 pN/µm depending on the distance from the center. The frictional coefficient was ~980 pN s/µm. The measured values were smaller than the previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. The frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.


Assuntos
Caenorhabditis elegans , Núcleo Celular , Embrião não Mamífero , Microtúbulos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/citologia , Núcleo Celular/metabolismo , Embrião não Mamífero/citologia , Microtúbulos/metabolismo , Centrifugação , Citoplasma/metabolismo
2.
Mol Cell Proteomics ; 23(5): 100758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574860

RESUMO

The acceleration of advances in proteomics has enabled integration with imaging at the EM and light microscopy levels, cryo-EM of protein structures, and artificial intelligence with proteins comprehensively and accurately resolved for cell structures at nanometer to subnanometer resolution. Proteomics continues to outpace experimentally based structural imaging, but their ultimate integration is a path toward the goal of a compendium of all proteins to understand mechanistically cell structure and function.


Assuntos
Microscopia Crioeletrônica , Proteômica , Proteômica/métodos , Humanos , Biologia Celular , Animais
3.
Am J Pathol ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39427762

RESUMO

Alport syndrome is a rare kidney disease typically more severe in males due to its X-linked inheritance. However, female patients with heterozygous X-linked Alport syndrome (XLAS) can develop renal failure over time, necessitating accurate pathological assessment for effective therapy. A key pathological finding in female XLAS patients is the mosaic pattern of partial loss of α5 chains of type IV collagen. This study, using a mouse model of XLAS with a nonsense mutation (R471*) in the Col4a5 gene, analogous to human XLAS, aimed to examine the consistency of this pattern with the glomerular basement membrane (GBM) structure. A modified periodic acid-methenamine silver (PAMS) staining method was developed for clearer GBM visualization. The integrated images from COL4α5-stained fluorescence, PAMS, and low-vacuum scanning electron microscopy (LVSEM) into a single-slide section and applied supervised deep learning to predict GBM lesions. Results showed significant individual variability in urinary protein levels and histological lesions. Pathological parameters, including crescent formation, focal segmental glomerulosclerosis, and the COL4α5/α2 ratio, correlated with clinical parameters like urinary protein and plasma creatinine levels. Integrated LVSEM analysis revealed dense GBM regions corresponded to areas where COL4α5 was preserved, while coarse GBM (basket-weave lesions) occurred in COL4α5-deficient regions. These advanced techniques can enhance biopsy-based diagnosis of Alport syndrome and aid in developing AI diagnostic tools for diseases involving basement membrane lesions.

4.
Proc Natl Acad Sci U S A ; 119(37): e2122032119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067315

RESUMO

Photosynthetic organisms have developed a regulation mechanism called state transition (ST) to rapidly adjust the excitation balance between the two photosystems by light-harvesting complex II (LHCII) movement. Though many researchers have assumed coupling of the dynamic transformations of the thylakoid membrane with ST, evidence of that remains elusive. To clarify the above-mentioned coupling in a model organism Chlamydomonas, here we used two advanced microscope techniques, the excitation-spectral microscope (ESM) developed recently by us and the superresolution imaging based on structured-illumination microscopy (SIM). The ESM observation revealed ST-dependent spectral changes upon repeated ST inductions. Surprisingly, it clarified a less significant ST occurrence in the region surrounding the pyrenoid, which is a subcellular compartment specialized for the carbon-fixation reaction, than that in the other domains. Further, we found a species dependence of this phenomenon: 137c strain showed the significant intracellular inhomogeneity of ST occurrence, whereas 4A+ strain hardly did. On the other hand, the SIM observation resolved partially irreversible fine thylakoid transformations caused by the ST-inducing illumination. This fine, irreversible thylakoid transformation was also observed in the STT7 kinase-lacking mutant. This result revealed that the fine thylakoid transformation is not induced solely by the LHCII phosphorylation, suggesting the highly susceptible nature of the thylakoid ultrastructure to the photosynthetic light reactions.


Assuntos
Chlamydomonas , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Tilacoides , Chlamydomonas/enzimologia , Chlamydomonas/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/química , Fosforilação , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/química , Tilacoides/enzimologia , Tilacoides/efeitos da radiação
5.
Proc Natl Acad Sci U S A ; 119(42): e2204804119, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215510

RESUMO

Recently, log-periodic quantum oscillations have been detected in the topological materials zirconium pentatelluride (ZrTe5) and hafnium pentatelluride (HfTe5), displaying an intriguing discrete scale invariance (DSI) characteristic. In condensed materials, the DSI is considered to be related to the quasi-bound states formed by massless Dirac fermions with strong Coulomb attraction, offering a feasible platform to study the long-pursued atomic-collapse phenomenon. Here, we demonstrate that a variety of atomic vacancies in the topological material HfTe5 can host the geometric quasi-bound states with a DSI feature, resembling an artificial supercritical atom collapse. The density of states of these quasi-bound states is enhanced, and the quasi-bound states are spatially distributed in the "orbitals" surrounding the vacancy sites, which are detected and visualized by low-temperature scanning tunneling microscope/spectroscopy. By applying the perpendicular magnetic fields, the quasi-bound states at lower energies become wider and eventually invisible; meanwhile, the energies of quasi-bound states move gradually toward the Fermi energy (EF). These features are consistent with the theoretical prediction of a magnetic field-induced transition from supercritical to subcritical states. The direct observation of geometric quasi-bound states sheds light on the deep understanding of the DSI in quantum materials.

6.
Proc Natl Acad Sci U S A ; 119(46): e2211786119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343232

RESUMO

The discovery of quantum interference (QI) is widely considered as an important advance in molecular electronics since it provides unique opportunities for achieving single-molecule devices with unprecedented performance. Although some pioneering studies suggested the presence of spin qubit coherence and QI in collective systems such as thin films, it remains unclear whether the QI can be transferred step-by-step from single molecules to different length scales, which hinders the application of QI in fabricating active molecular devices. Here, we found that QI can be transferred from a single molecule to their assemblies. We synthesized and investigated the charge transport through the molecular cages using 1,3-dipyridylbenzene (DPB) as a ligand block with a destructive quantum interference (DQI) effect and 2,5-dipyridylfuran (DPF) as a control building block with a constructive quantum interference (CQI) effect using both single-molecule break junction and large area junction techniques. Combined experiments and calculations revealed that both DQI and CQI had been transferred from the ligand blocks to the molecular cages and the monolayer thin film of the cages. Our work introduced QI effects from a ligand to the molecular cage comprising 732 atoms and even their monolayers, suggesting that the quantum interference could be scaled up within the phase-coherent distance.

7.
Nano Lett ; 24(39): 12125-12132, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39298669

RESUMO

Super-resolution (SR) microscopy provides a revolutionary optical imaging approach by breaking the diffraction limit of light, while the commonly required special instrumentation with complex optical setup hampers its popularity. Here, we present a scanning switch-off microscopy (SSM) concept that exploits the omnipresent switch-off response of fluorophores to enable super-resolution imaging using a commercial confocal microscope. We validated the SSM model with theoretical calculations and experiments. An imaging resolution of ∼100 nm was obtained for DNA origami nanostructures and cellular cytoskeletons using fluorescent labels of Alexa 405, Alexa 488, Cy3, and Atto 488. Notably, super-resolution imaging of live cells was realized with SSM, by employing a dronpa fluorescent protein as the fluorescent label. In principle, this SSM method can be applied to any excitation laser scanning-based microscope.


Assuntos
Corantes Fluorescentes , Microscopia Confocal , Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Microscopia Confocal/métodos , Humanos , DNA/química , Imagem Óptica/métodos , Nanoestruturas/química
8.
Nano Lett ; 24(25): 7572-7577, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860969

RESUMO

Achieving high-temperature superlubricity is essential for modern extreme tribosystems. Solid lubrication is the sole viable alternative due to the degradation of liquid ones but currently suffers from notable wear, instability, and high friction coefficient. Here, we report robust superlubricity in MoS2/graphene van der Waals heterostructures at high temperatures up to ∼850 K, achieved through localized heating to enable reliable friction testing. The ultralow friction of the MoS2/graphene heterostructure is found to be notably further reduced at elevated temperature and dominantly contributed by the MoS2 edge. The observation can be well described by a multi-contact model, wherein the thermally activated rupture of edge-contacts facilitates the sliding. Our results should be applicable to other van der Waals heterostructures and shed light on their applications for superlubricity at elevated temperature.

9.
Nano Lett ; 24(18): 5467-5473, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38647318

RESUMO

The discovery of room-temperature ferromagnetism in van der Waals (vdW) materials opens new avenues for exploring low-dimensional magnetism and its applications in spintronics. Recently, the observation of the room-temperature topological Hall effect in the vdW ferromagnet Fe3GaTe2 suggests the possible existence of room-temperature skyrmions, yet skyrmions have not been directly observed. In this study, real-space imaging was employed to investigate the domain evolution of the labyrinth and skyrmion structure. First, Néel-type skyrmions can be created at room temperature. In addition, the influence of flake thickness and external magnetic field (during field cooling) on both labyrinth domains and the skyrmion lattice is unveiled. Due to the competition between magnetic anisotropy and dipole interactions, the specimen thickness significantly influences the density of skyrmions. These findings demonstrate that Fe3GaTe2 can host room-temperature skyrmions of various sizes, opening up avenues for further study of magnetic topological textures at room temperature.

10.
Nano Lett ; 24(8): 2511-2519, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373158

RESUMO

Materials with pseudoelasticity can recover from large strains exceeding their elastic limits during unloading, making them promising damage-tolerant building blocks for advanced nanodevices. Nevertheless, a practical approach to realize controllable pseudoelastic behavior at nanoscale remains challenging. Here, we proposed a grain boundary (GB) engineering approach to endow metallic nanocrystals with a controllable pseudoelasticity. Both in situ nanomechanical testing and atomistic simulations demonstrate that such controllable pseudoelasticity is governed by the extension and contraction of an inherent stacking fault array at the GB. By precisely tuning GB misorientation and inclination, our simulation results reveal that metallic nanocrystals can exhibit tailored pseudoelastic performance across a broad spectrum of GBs in different face-centered cubic metals. These findings enrich our understanding of the intrinsic pseudoelasticity of GBs and provide a GB engineering approach toward metallic materials with reversible deformability.

11.
Nano Lett ; 24(6): 1931-1935, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38315038

RESUMO

Biased metal-molecule-metal junctions emit light through electroluminescence, a phenomenon at the intersection of molecular electronics and nanoplasmonics. This can occur when the junction plasmon mode is excited by inelastic electron current fluctuations. Here, we simultaneously measure the conductance and electroluminescence intensity from single-molecule junctions with time resolution in a solution environment at room temperature. We use current versus bias data to determine the molecular junction transport parameters and then relate these to the expected current shot noise. We find that the electroluminescence signal accurately matches the theoretical prediction of shot-noise-driven emission in a large fraction of the molecular junctions studied. This introduces a novel experimental method for qualitatively estimating finite-frequency shot noise in single-molecule junctions under ambient conditions. We further demonstrate that electroluminescence can be used to obtain the level alignment of the frontier orbital dominating transport in the molecular junction.

12.
Nano Lett ; 24(30): 9283-9288, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39023006

RESUMO

The electrostatic environment around nanoscale molecular junctions modulates charge transport; solvents alter this environment. Methods to directly probe solvent effects require correlating measurements of the local electrostatic environment with charge transport across the metal-molecule-metal junction. Here, we measure the conductance and current-voltage characteristics of molecular wires using a scanning tunneling microscope-break junction (STM-BJ) setup in two commonly used solvents. Our results show that the solvent environment induces shifts in molecular conductance, which we quantify, but more importantly we find that the solvent also impacts the magnitude of current rectification in molecular junctions. By incorporating electrochemical impedance spectroscopy into the STM-BJ setup, we measure the capacitance of the dipole layer formed at the metal-solvent interface and show that rectification can be correlated with solvent capacitance. These results provide a method of quantifying the impact of the solvent environment and a path toward improved environmental control of molecular devices.

13.
Nano Lett ; 24(2): 703-707, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175934

RESUMO

Gold-dithiol molecular junctions have been studied both experimentally and theoretically. However, the nature of the gold-thiolate bond as it relates to the solvent has seldom been investigated. It is known that solvents can impact the electronic structure of single-molecule junctions, but the correlation between the solvent and dithiol-linked single-molecule junction conductance is not well understood. We study molecular junctions formed with thiol-terminated phenylenes from both 1-chloronaphthalene and 1-bromonaphthalene solutions. We find that the most probable conductance and the distribution of conductances are both affected by the solvent. First-principles calculations show that junction conductance depends on the binding configurations (adatom, atop, and bridge) of the thiolate on the Au surface, as has been shown previously. More importantly, we find that brominated solvents can restrict the binding of thiols to specific Au sites. This mechanism offers new insight into the effects of the solvent environment on covalent bonding in molecular junctions.

14.
Nano Lett ; 24(11): 3470-3475, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451177

RESUMO

Monolayer transition metal dichalcogenide VTe2 exhibits multiple charge density wave (CDW) phases, mainly (4 × 4) and (4 × 1). Here we report facile dynamic and tens-of-nanometer scale switching between these CDW phases with gentle bias pulses in scanning tunneling microscopy. Bias pulses purposely stimulate a reversible random CDW symmetry change between the isotropic (4 × 4) and anisotropic (4 × 1) CDWs, as well as CDW phase slips and rotation. The switching threshold of ∼1.0 V is independent of bias polarity, and the switching rate varies linearly with the tunneling current. Density functional theory calculations indicate that a coherent CDW phase switching incurs an energy barrier of ∼2.0-3.0 eV per (4 × 4) unit cell. While there is a challenge in understanding the observed large-area CDW random fluttering, we provide some possible explanations. The ability to manipulate electronic CDW phases sheds new light on tailoring CDW properties on demand.

15.
J Neurosci ; 43(30): 5468-5482, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37414561

RESUMO

The rod photoreceptor synapse is the first synapse of dim-light vision and one of the most complex in the mammalian CNS. The components of its unique structure, a presynaptic ribbon and a single synaptic invagination enclosing several postsynaptic processes, have been identified, but disagreements about their organization remain. Here, we have used EM tomography to generate high-resolution images of 3-D volumes of the rod synapse from the female domestic cat. We have resolved the synaptic ribbon as a single structure, with a single arciform density, indicating the presence of one long site of transmitter release. The organization of the postsynaptic processes, which has been difficult to resolve with past methods, appears as a tetrad arrangement of two horizontal cell and two rod bipolar cell processes. Retinal detachment severely disrupts this organization. After 7 d, EM tomography reveals withdrawal of rod bipolar dendrites from most spherules; fragmentation of synaptic ribbons, which lose their tight association with the presynaptic membrane; and loss of the highly branched telodendria of the horizontal cell axon terminals. After detachment, the hilus, the opening through which postsynaptic processes enter the invagination, enlarges, exposing the normally sequestered environment within the invagination to the extracellular space of the outer plexiform layer. Our use of EM tomography provides the most accurate description to date of the complex rod synapse and details changes it undergoes during outer segment degeneration. These changes would be expected to disrupt the flow of information in the rod pathway.SIGNIFICANCE STATEMENT Ribbon-type synapses transmit the first electrical signals of vision and hearing. Despite their crucial role in sensory physiology, the three-dimensional ultrastructure of these synapses, especially the complex organization of the rod photoreceptor synapse, is not well understood. We used EM tomography to obtain 3-D imaging at nanoscale resolution to help resolve the organization of rod synapses in normal and detached retinas. This approach has enabled us to show that in the normal retina a single ribbon and arciform density oppose a tetrad of postsynaptic processes. In addition, it enabled us to provide a 3-D perspective of the ultrastructural changes that occur in response to retinal detachment.


Assuntos
Descolamento Retiniano , Feminino , Animais , Gatos , Microscopia Eletrônica , Sinapses/metabolismo , Retina/ultraestrutura , Células Bipolares da Retina , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Mamíferos
16.
J Struct Biol ; 216(3): 108107, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906499

RESUMO

Atomic force microscope enables ultra-precision imaging of living cells. However, atomic force microscope imaging is a complex and time-consuming process. The obtained images of living cells usually have low resolution and are easily influenced by noise leading to unsatisfactory imaging quality, obstructing the research and analysis based on cell images. Herein, an adaptive attention image reconstruction network based on residual encoder-decoder was proposed, through the combination of deep learning technology and atomic force microscope imaging supporting high-quality cell image acquisition. Compared with other learning-based methods, the proposed network showed higher peak signal-to-noise ratio, higher structural similarity and better image reconstruction performances. In addition, the cell images reconstructed by each method were used for cell recognition, and the cell images reconstructed by the proposed network had the highest cell recognition rate. The proposed network has brought insights into the atomic force microscope-based imaging of living cells and cell image reconstruction, which is of great significance in biological and medical research.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia de Força Atômica , Microscopia de Força Atômica/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Razão Sinal-Ruído , Aprendizado Profundo
17.
J Struct Biol ; 216(3): 108108, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944401

RESUMO

Developments in direct electron detector technology have played a pivotal role in enabling high-resolution structural studies by cryo-EM at 200 and 300 keV. Yet, theory and recent experiments indicate advantages to imaging at 100 keV, energies for which the current detectors have not been optimized. In this study, we evaluated the Gatan Alpine detector, designed for operation at 100 and 200 keV. Compared to the Gatan K3, Alpine demonstrated a significant DQE improvement at these energies, specifically a âˆ¼ 4-fold improvement at Nyquist at 100 keV. In single-particle cryo-EM experiments, Alpine datasets yielded better than 2 Å resolution reconstructions of apoferritin at 120 and 200 keV on a ThermoFisher Scientific (TFS) Glacios microscope fitted with a non-standard SP-Twin lens. We also achieved a âˆ¼ 3.2 Å resolution reconstruction of a 115 kDa asymmetric protein complex, proving Alpine's effectiveness with complex biological samples. In-depth analysis revealed that Alpine reconstructions are comparable to K3 reconstructions at 200 keV, and remarkably, reconstruction from Alpine at 120 keV on a TFS Glacios surpassed all but the 300 keV data from a TFS Titan Krios with GIF/K3. Additionally, we show Alpine's capability for high-resolution data acquisition and screening on lower-end systems by obtaining âˆ¼ 3 Å resolution reconstructions of apoferritin and aldolase at 100 keV and detailed 2D averages of a 55 kDa sample using a side-entry cryo holder. Overall, we show that Gatan Alpine performs well with the standard 200 keV imaging systems and may potentially capture the benefits of lower accelerating voltages, bringing smaller sized particles within the scope of cryo-EM.


Assuntos
Apoferritinas , Microscopia Crioeletrônica , Elétrons , Microscopia Crioeletrônica/métodos , Apoferritinas/química , Apoferritinas/ultraestrutura , Imagem Individual de Molécula/métodos , Processamento de Imagem Assistida por Computador/métodos
18.
Curr Issues Mol Biol ; 46(3): 1955-1974, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534744

RESUMO

The purpose of this study was to reveal the combined effects of propolis (P) and quercetin (Q) against diabetic peripheral neuropathy developing with streptozotocin-induced diabetes in rats. Sixty-four adult male rats were divided into eight equal groups: control, P (100 mg/kg/day), Q (100 mg/kg/day), P + Q (100 mg/day for both), diabetes mellitus (DM) (single-dose 60 mg/kg streptozotocin), DM + P, DM + Q, and DM + P + Q. The rats were sacrificed, and blood and sciatic nerve tissues were collected. Blood glucose and malondialdehyde (MDA) levels increased, while IL-6 and total antioxidant status decreased in the DM group (p = 0.016 and p = 0.047, respectively). Ultrastructural findings showed degeneration of the axon and myelin sheath. The apoptotic index (AI %), TNF-α, and IL-1ß immunopositivity increased significantly in the DM group (p < 0.001). Morphological structures approaching those of the controls were observed in the DM + P, DM + Q, and DM + P + Q groups. Morphometric measurements increased markedly in all treatment groups (p < 0.001), while blood glucose and MDA levels, AI (%), TNF-α, and IL-1ß immunopositivity decreased. In conclusion, the combined effects of propolis and quercetin in diabetic neuropathy may provide optimal morphological protection with neuroprotective effects by reducing hyperglycemia, and these may represent a key alternative supplement in regenerative medicine.

19.
Biochem Biophys Res Commun ; 695: 149401, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154264

RESUMO

Human calcium sensing receptor (CaSR) senses calcium ion concentrations in vivo and is an important class of drug targets. Mutations in the receptor can lead to disorders of calcium homeostasis, including hypercalcemia and hypocalcemia. Here, 127 CaSR-targeted nanobodies were generated from camels, and four nanobodies with inhibitory function were further identified. Among these nanobodies, NB32 can effectively inhibit the mobilization of intracellular calcium ions (Ca2+i) and suppress the G12/13 and ERK1/2 signaling pathways downstream of CaSR. Moreover, it enhanced the inhibitory effect of the calcilytics as a negative allosteric modulator (NAM). We determined the structure of complex and found NB32 bound to LB2 (Ligand-binding 2) domain of CaSR to prevent the interaction of LB2 domains of two protomers to stabilize the inactive state of CaSR.


Assuntos
Hipercalcemia , Hipocalcemia , Anticorpos de Domínio Único , Humanos , Receptores de Detecção de Cálcio/metabolismo , Cálcio/metabolismo , Hipocalcemia/genética , Hipercalcemia/genética
20.
BMC Plant Biol ; 24(1): 221, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539080

RESUMO

Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activities of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial strains enhanced plant growth by reducing oxidative stress caused by metals.


Assuntos
Loratadina/análogos & derivados , Metais Pesados , Poluentes do Solo , Spinacia oleracea , Antioxidantes/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo , Bactérias/metabolismo , Solo/química , Plantas/metabolismo , Nitrogênio/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA