Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Bioorg Med Chem ; 105: 117716, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608329

RESUMO

In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.


Assuntos
Sobrevivência Celular , Cicloexilaminas , Desenho de Fármacos , Ferroptose , Células Endoteliais da Veia Umbilical Humana , Piperazinas , Humanos , Ferroptose/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/síntese química , Piperazinas/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Relação Estrutura-Atividade , Cicloexilaminas/farmacologia , Cicloexilaminas/química , Cicloexilaminas/síntese química , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Fenilenodiaminas/farmacologia , Fenilenodiaminas/química , Fenilenodiaminas/síntese química , Relação Dose-Resposta a Droga , Espécies Reativas de Oxigênio/metabolismo , Compostos Ferrosos/farmacologia , Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos
2.
Beilstein J Org Chem ; 20: 2270-2279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286789

RESUMO

The utility of bio-isosteres is broad in drug discovery and methodology herein enables the preparation of deuterium-labeled products is the most fundamental of known bio-isosteric replacements. As such we report the use of both [D1]-aldehydes and [D2]-isonitriles across 8 multicomponent reactions (MCRs) to give diverse arrays of deuterated products. A highlight is the synthesis of several FDA-approved calcium channel blockers, selectively deuterated at a t 1/2 limiting metabolic soft-spot via use of [D1]-aldehydes. Surrogate pharmacokinetic analyses of microsomal stability confirm prolongation of t 1/2 of the new deuterated analogs. We also report the first preparation of [D2]-isonitriles from [D3]-formamides via a modified Leuckart-Wallach reaction and their use in an MCR to afford products with [D2]-benzylic positions and likely significantly enhanced metabolic stability, a key parameter for property-based design efforts.

3.
Xenobiotica ; : 1-36, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971300

RESUMO

Polyethylene glycol (PEG) was introduced into synthetic bilirubin 3α and a PEGylated bilirubin 3α nanoparticle (BX-001N, Brixelle®) was developed for the first time.An in vitro microsomal stability study, in vivo PK studies with intravenous bolus (IV) and subcutaneous injection (SC), and a semi-mass balance study of BX-001N were investigated to evaluate its pharmacokinetic (PK) properties in male Sprague-Dawley (SD) rats using developed liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-qTOF/MS).Following IV administration at 10 or 30 mg/kg, BX-001N showed very low clearance (0.33-0.67 mL/min/kg) with predominant distribution in the vascular system (Vd = 51.73-83.02 mL/kg). BX-001N was also very stable in vitro liver microsomal stability study.Following SC administration at 10 or 30 mg/kg, the bioavailability of BX-001N in plasma at 10 mg/kg was around 43% and showed the less dose-proportionality at 30 mg/kg dose.BX-001N was mainly excreted via the urinary pathway (86.59-92.99% of total amount of parent drug in excreta; urine and feces) not via the biliary one.

4.
J Enzyme Inhib Med Chem ; 37(1): 718-727, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35156494

RESUMO

Esters are one of the major functional groups present in the structures of prodrugs and bioactive compounds. Their presence is often associated with hydrolytic lability. In this paper, we describe a comparative chemical and biological stability of homologous esters and isosteres in base media as well as in rat plasma and rat liver microsomes. Our results provided evidence for the hydrolytic structure lability relationship and demonstrated that the hydrolytic stability in plasma and liver microsome might depend on carboxylesterase activity. Molecular modelling studies were performed in order to understand the experimental data. Taken together, the data could be useful to design bioactive compounds or prodrugs based on the correct choice of the ester subunit, addressing compounds with higher or lower metabolic lability.


Assuntos
Carboxilesterase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ésteres/farmacologia , Pró-Fármacos/farmacologia , Animais , Carboxilesterase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Ésteres/sangue , Ésteres/química , Hidrólise , Masculino , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Pró-Fármacos/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
5.
Molecules ; 27(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36080307

RESUMO

Tyrosine kinase inhibitors are validated therapeutic agents against EGFR-mutated non-small cell lung cancer (NSCLC). However, the associated critical side effects of these agents are inevitable, demanding more specific and efficient targeting agents. Recently, we have developed and reported a non-covalent imidazo[1,2-a]quinoxaline-based EGFR inhibitor (6b), which showed promising inhibitory activity against the gefitinib-resistant H1975(L858R/T790M) lung cancer cell line. In the present study, we further explored the 6b compound in vivo by employing the A549-induced xenograft model in nude mice. The results indicate that the administration of the 6b compound significantly abolished the growth of the tumor in the A549 xenograft nude mice. Whereas the control mice bearing tumors displayed a declining trend in the survival curve, treatment with the 6b compound improved the survival profile of mice. Moreover, the histological examination showed the cancer cell cytotoxicity of the 6b compound was characterized by cytoplasmic destruction observed in the stained section of the tumor tissues of treated mice. The immunoblotting and qPCR results further signified that 6b inhibited EGFR in tissue samples and consequently altered the downstream pathways mediated by EGFR, leading to a reduction in cancer growth. Therefore, the in vivo findings were in corroboration with the in vitro results, suggesting that 6b possessed potential anticancer activity against EGFR-dependent lung cancer. 6b also exhibited good stability in human and mouse liver microsomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/farmacologia , Quinoxalinas/farmacologia , Quinoxalinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Bioorg Med Chem Lett ; 36: 127825, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33508464

RESUMO

We analyzed the influence of calculated physicochemical properties of more than 20,000 compounds on their P-gp and BCRP mediated efflux, microsomal stability, hERG inhibition, and plasma protein binding. Our goal was to provide guidance for designing compounds with desired pharmacokinetic profiles. Our analysis showed that compounds with ClogP less than 3 and molecular weight less than 400 will have high microsomal stability and low plasma protein binding. Compounds with logD less than 2.2 and/or basic pKa larger than 5.3 are likely to be BCRP substrates and compounds with basic pKa less than 5.2 and/or acidic pKa less than 13.4 are less likely to inhibit hERG. Based on these results, compounds with MW < 400, ClogP < 3, basic pKa < 5.2 and acidic pKa < 13.4 are likely to have good bioavailability and low hERG inhibition.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Sanguíneas/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Preparações Farmacêuticas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Animais , Proteínas Sanguíneas/química , Físico-Química , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Camundongos , Microssomos/química , Microssomos/metabolismo , Estrutura Molecular , Peso Molecular , Proteínas de Neoplasias/química , Ratos , Relação Estrutura-Atividade
7.
Malar J ; 19(1): 1, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898492

RESUMO

BACKGROUND: Modelling and simulation are being increasingly utilized to support the discovery and development of new anti-malarial drugs. These approaches require reliable in vitro data for physicochemical properties, permeability, binding, intrinsic clearance and cytochrome P450 inhibition. This work was conducted to generate an in vitro data toolbox using standardized methods for a set of 45 anti-malarial drugs and to assess changes in physicochemical properties in relation to changing target product and candidate profiles. METHODS: Ionization constants were determined by potentiometric titration and partition coefficients were measured using a shake-flask method. Solubility was assessed in biorelevant media and permeability coefficients and efflux ratios were determined using Caco-2 cell monolayers. Binding to plasma and media proteins was measured using either ultracentrifugation or rapid equilibrium dialysis. Metabolic stability and cytochrome P450 inhibition were assessed using human liver microsomes. Sample analysis was conducted by LC-MS/MS. RESULTS: Both solubility and fraction unbound decreased, and permeability and unbound intrinsic clearance increased, with increasing Log D7.4. In general, development compounds were somewhat more lipophilic than legacy drugs. For many compounds, permeability and protein binding were challenging to assess and both required the use of experimental conditions that minimized the impact of non-specific binding. Intrinsic clearance in human liver microsomes was varied across the data set and several compounds exhibited no measurable substrate loss under the conditions used. Inhibition of cytochrome P450 enzymes was minimal for most compounds. CONCLUSIONS: This is the first data set to describe in vitro properties for 45 legacy and development anti-malarial drugs. The studies identified several practical methodological issues common to many of the more lipophilic compounds and highlighted areas which require more work to customize experimental conditions for compounds being designed to meet the new target product profiles. The dataset will be a valuable tool for malaria researchers aiming to develop PBPK models for the prediction of human PK properties and/or drug-drug interactions. Furthermore, generation of this comprehensive data set within a single laboratory allows direct comparison of properties across a large dataset and evaluation of changing property trends that have occurred over time with changing target product and candidate profiles.


Assuntos
Antimaláricos/metabolismo , Antimaláricos/farmacologia , Desenvolvimento de Medicamentos , Descoberta de Drogas , Antimaláricos/sangue , Antimaláricos/normas , Células CACO-2 , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Humanos , Cinética , Microssomos Hepáticos , Permeabilidade , Ligação Proteica , Solubilidade , Espectrometria de Massas em Tandem
8.
Molecules ; 25(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235404

RESUMO

Novel purine and purine isosteres containing a ferrocene motif and 4,1-disubstituted (11a-11c, 12a-12c, 13a-13c, 14a-14c, 15a-15c, 16a, 23a-23c, 24a-24c, 25a-25c) and 1,4-disubstituted (34a-34c and 35a-35c) 1,2,3-triazole rings were synthesized. The most potent cytotoxic effect on colorectal adenocarcinoma (SW620) was exerted by the 6-chloro-7-deazapurine 11c (IC50 = 9.07 µM), 6-chloropurine 13a (IC50 = 14.38 µM) and 15b (IC50 = 15.50 µM) ferrocenylalkyl derivatives. The N-9 isomer of 6-chloropurine 13a containing ferrocenylmethylene unit showed a favourable in vitro physicochemical and ADME properties including high solubility, moderate permeability and good metabolic stability in human liver microsomes.


Assuntos
Antineoplásicos/síntese química , Citotoxinas/síntese química , Compostos Ferrosos/química , Metalocenos/química , Purinas/química , Triazóis/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Permeabilidade , Solubilidade , Estereoisomerismo , Relação Estrutura-Atividade
9.
Chem Pharm Bull (Tokyo) ; 67(8): 824-838, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366832

RESUMO

We synthesized and evaluated novel 5-[2-(thiophen-2-yl)propan-2-yl]-4H-1,2,4-triazole derivatives as 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) inhibitors. Optimization of the thiophene ring and the substituents on the 1,2,4-triazole ring produced 3,4-dicyclopropyl-5-{2-[3-fluoro-5-(trifluoromethyl)thiophen-2-yl]propan-2-yl}-4H-1,2,4-triazole monohydrochloride (9a), which showed potent and selective inhibitory activity against human 11ß-HSD1. Compound 9a was also metabolically stable against human and mouse liver microsomes. Oral administration of 9a to diabetic ob/ob mice lowered corticosterone levels in adipose tissue, and thereby reduced plasma glucose and insulin levels in a dose-dependent manner.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Triazóis/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Administração Oral , Animais , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Masculino , Camundongos , Camundongos Obesos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/administração & dosagem , Triazóis/química
10.
J Labelled Comp Radiopharm ; 62(5): 202-208, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30828860

RESUMO

As part of a program toward making analogues of amlexanox (1), currently under clinical investigation for the treatment of type 2 diabetes and obesity, we have synthesized derivative 5 in which deuterium has been introduced into two sites of metabolism on the C-7 isopropyl function of amlexanox. The synthesis of 5 was completed in an efficient three-step process utilizing reduction of key olefin 7b to 8 by Wilkinson's catalyst to provide specific incorporation of di-deuterium across the double bond. Compound 5 displayed nearly equivalent potency to amlexanox (IC50 , 1.1µM vs 0.6µM, respectively) against recombinant human TBK1. When incubated with human, rat, and mouse liver microsomes, amlexanox (1) and d2 -amlexanox (5) were stable (t1/2  > 60 minutes) with 1 showing marginally greater stability relative to 5 except for rat liver microsomes. These data show that incorporating deuterium into two sites of metabolism does not majorly suppress Cyp-mediated metabolism relative to amlexanox.


Assuntos
Aminopiridinas/síntese química , Aminopiridinas/metabolismo , Deutério/química , Microssomos/metabolismo , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Técnicas de Química Sintética , Estabilidade de Medicamentos , Humanos , Marcação por Isótopo , Cinética , Camundongos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29567338

RESUMO

We have previously identified and reported several potent piperidine-derived amide inhibitors of the human soluble epoxide hydrolase (sEH) enzyme. The inhibition of this enzyme leads to elevated levels of epoxyeicosatrienoic acids (EETs), which are known to possess anti-inflammatory, vasodilatory, and anti-fibrotic effects. Herein, we report the synthesis of 9 analogs of the lead sEH inhibitor and the follow-up structure-activity relationship and liver microsome stability studies. Our findings show that isosteric modifications that lead to significant alterations in the steric and electronic properties at a specific position in the molecule can reduce the efficacy by up to 75-fold. On the other hand, substituting hydrogen with deuterium produces a notable increase (∼30%) in the molecules' half-lives in both rat and human microsomes, while maintaining sEH inhibition potency. These data highlight the utility of isosteric replacement for improving bioavailability, and the newly-synthesized inhibitor structures may thus, serve as a starting point for preclinical development. Our docking study reveals that in the catalytic pocket of sEH, these analogs are in proximity of the key amino acids involved in hydrolysis of EETs.


Assuntos
Amidas , Inibidores Enzimáticos , Epóxido Hidrolases , Metabolismo dos Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Piperidinas , Amidas/química , Amidas/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Feminino , Humanos , Masculino , Piperidinas/química , Piperidinas/farmacologia , Ratos
12.
Bioorg Med Chem Lett ; 28(2): 94-102, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29233653

RESUMO

LpxC inhibitors are new-type antibacterial agents developed in the last twenty years, mainly against Gram-negative bacteria infections. To develop novel LpxC inhibitors with good antibacterial activities and biological metabolism, we summarized the basic skeleton of reported LpxC inhibitors, designed and synthesized several series of compounds and tested their antibacterial activities against Escherichial coli and Pseudomonas aeruginosa in vitro. Structure-activity relationships have been discussed in this article. The metabolism stability of YDL-2, YDL-5, YDL-8, YDL-14, YDL-20-YDL-23 have been evaluated in liver microsomes, which indicated that the 2-amino isopropyl group may be a preferred structure than the 2-hydroxy ethyl group in the design of LpxC inhibitors.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Amidoidrolases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 28(3): 459-465, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254642

RESUMO

The synthesis and SAR of a novel class of spirobenzofuranpiperidinyl-derived alkanoic acids 6-34 as sphingosine S1P5 receptor agonists are described. The target compounds generally elicit high S1P5 receptor agonistic potencies and in general are selective against both S1P1 and S1P3 receptor subtypes. The key compound 32 shows a high bioavailability of 73% and a CNS/plasma ratio of 0.8 after oral administration in rats.


Assuntos
Benzofuranos/farmacologia , Receptores de Lisoesfingolipídeo/agonistas , Administração Oral , Animais , Benzofuranos/química , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 26(18): 4984-4995, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30249495

RESUMO

A structure-activity/structure-property relationship study based on the physicochemical as well as in vitro pharmacokinetic properties of a first generation matrix metalloproteinase (MMP)-13 inhibitor (2) was undertaken. After systematic variation of inhibitor 2, compound 31 was identified which exhibited microsomal half-life higher than 20 min, kinetic solubility higher than 20 µM, and a permeability coefficient greater than 20 × 10-6 cm/s. Compound 31 also showed excellent in vivo PK properties after IV dosing (Cmax = 56.8 µM, T1/2 (plasma) = 3.0 h, Cl = 0.23 mL/min/kg) and thus is a suitable candidate for in vivo efficacy studies in an OA animal model.


Assuntos
Metaloproteinase 13 da Matriz/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Animais , Inibidores das Enzimas do Citocromo P-450/farmacologia , Meia-Vida , Humanos , Concentração Inibidora 50 , Cinética , Inibidores de Metaloproteinases de Matriz/farmacocinética , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Animais , Ratos , Solubilidade , Relação Estrutura-Atividade
15.
Bioorg Med Chem ; 25(17): 4656-4664, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720332

RESUMO

As a bioisosteric strategy to overcome the poor metabolic stability of lead compound KYS05090S, a series of new fluoro-substituted 3,4-dihydroquinazoline derivatives was prepared and evaluated for T-type calcium channel (Cav3.2) block, cytotoxic effects and liver microsomal stability. Among them, compound 8h (KCP10068F) containing 4-fluorobenzyl amide and 4-cyclohexylphenyl ring potently blocked Cav3.2 currents (>90% inhibition) at 10µM concentration and exhibited cytotoxic effect (IC50=5.9µM) in A549 non-small cell lung cancer cells that was comparable to KYS05090S. Furthermore, 8h showed approximately a 2-fold increase in liver metabolic stability in rat and human species compared to KYS05090S. Based on these overall results, 8h (KCP10068F) may therefore represent a good backup compound for KYS05090S for further biological investigations as novel cytotoxic agent. In addition, compound 8g (KCP10067F) was found to partially protect from inflammatory pain via a blockade of Cav3.2 channels.


Assuntos
Analgésicos/síntese química , Bloqueadores dos Canais de Cálcio/síntese química , Quinazolinas/química , Quinidina/análogos & derivados , Células A549 , Analgésicos/química , Analgésicos/toxicidade , Animais , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/toxicidade , Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Flúor/química , Células HEK293 , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos/metabolismo , Técnicas de Patch-Clamp , Quinazolinas/síntese química , Quinazolinas/toxicidade , Quinidina/síntese química , Quinidina/química , Quinidina/toxicidade , Ratos
16.
Molecules ; 22(4)2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358331

RESUMO

We have previously demonstrated promising anticancer efficacy of orally-fed whole ginger extract (GE) in preclinical prostate models emphasizing the importance of preservation of the natural "milieu". Essentially, GE primarily includes active ginger phenolics viz., 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G), and 6-shogaol (6S). However, the druglikeness properties of active GE phenolics like solubility, stability, and metabolic characteristics are poorly understood. Herein, we determined the physicochemical and biochemical properties of GE phenolics by conducting in vitro assays and mouse pharmacokinetic studies with and without co-administration of ketoconazole (KTZ). GE phenolics showed low to moderate solubility in various pH buffers but were stable in simulated gastric and intestinal fluids, indicating their suitability for oral administration. All GE phenolics were metabolically unstable and showed high intrinsic clearance in mouse, rat, dog, and human liver microsomes. Upon oral administration of 250 mg/kg GE, sub-therapeutic concentrations of GE phenolics were observed. Treatment of plasma samples with ß-glucuronidase (ßgd) increased the exposure of all GE phenolics by 10 to 700-fold. Co-administration of KTZ with GE increased the exposure of free GE phenolics by 3 to 60-fold. Interestingly, when the same samples were treated with ßgd, the exposure of GE phenolics increased by 11 to 60-fold, suggesting inhibition of phase I metabolism by KTZ but little effect on glucuronide conjugation. Correlating the in vitro and in vivo results, it is reasonable to conclude that phase II metabolism seems to be the predominant clearance pathway for GE phenolics. We present evidence that the first-pass metabolism, particularly glucuronide conjugation of GE phenolics, underlies low systemic exposure.


Assuntos
Fígado/química , Fenóis/farmacocinética , Compostos Fitoquímicos/farmacocinética , Zingiber officinale/química , Administração Oral , Animais , Cães , Humanos , Concentração de Íons de Hidrogênio , Cetoconazol/administração & dosagem , Camundongos , Fenóis/administração & dosagem , Fenóis/química , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Ratos , Solubilidade
17.
Pharm Res ; 33(2): 433-49, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26415647

RESUMO

PURPOSE: Mouse efficacy studies are a critical hurdle to advance translational research of potential therapeutic compounds for many diseases. Although mouse liver microsomal (MLM) stability studies are not a perfect surrogate for in vivo studies of metabolic clearance, they are the initial model system used to assess metabolic stability. Consequently, we explored the development of machine learning models that can enhance the probability of identifying compounds possessing MLM stability. METHODS: Published assays on MLM half-life values were identified in PubChem, reformatted, and curated to create a training set with 894 unique small molecules. These data were used to construct machine learning models assessed with internal cross-validation, external tests with a published set of antitubercular compounds, and independent validation with an additional diverse set of 571 compounds (PubChem data on percent metabolism). RESULTS: "Pruning" out the moderately unstable / moderately stable compounds from the training set produced models with superior predictive power. Bayesian models displayed the best predictive power for identifying compounds with a half-life ≥1 h. CONCLUSIONS: Our results suggest the pruning strategy may be of general benefit to improve test set enrichment and provide machine learning models with enhanced predictive value for the MLM stability of small organic molecules. This study represents the most exhaustive study to date of using machine learning approaches with MLM data from public sources.


Assuntos
Descoberta de Drogas/métodos , Aprendizado de Máquina , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Animais , Teorema de Bayes , Bases de Dados de Produtos Farmacêuticos , Camundongos , Modelos Biológicos , Preparações Farmacêuticas/química , Análise de Componente Principal , Bibliotecas de Moléculas Pequenas/química
18.
Bioorg Med Chem Lett ; 26(22): 5418-5428, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27789137

RESUMO

N,N-Disubstituted benzylamine derivatives have been identified as CXCR3 antagonists. Compounds were optimized to improve affinity and selectivity, to increase metabolic stability in human and mouse liver microsomes, to increase Caco-2 permeability. Optimization was supported by monitoring physico-chemical properties using both experimental and computational means. Several compounds with double-digit nanomolar CXCR3 affinity, favorable selectivity, microsomal stability, Caco-2 permeability and human hepatocyte clearance have been identified.


Assuntos
Benzilaminas/química , Benzilaminas/farmacologia , Receptores CXCR3/antagonistas & inibidores , Receptores CXCR3/metabolismo , Animais , Benzilaminas/farmacocinética , Células CACO-2 , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 26(22): 5429-5437, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27789141

RESUMO

A new series of beta amino acids, which act as CXCR3 antagonists, has been identified. The formerly optimized N,N-disubstituted benzylamine derivatives with carboxylic acid function on the N-atom was used as starting point and compounds with carboxyl function not attached to the N-atom were investigated. Affinity, metabolic stability in human and mouse liver microsomes and Caco-2 permeability were optimized. Compounds with double-digit nanomolar CXCR3 affinity, favourable microsomal stability and Caco-2 permeability have been identified.


Assuntos
Aminoácidos/química , Aminoácidos/farmacologia , Benzilaminas/química , Benzilaminas/farmacologia , Receptores CXCR3/antagonistas & inibidores , Aminoácidos/farmacocinética , Animais , Benzilaminas/farmacocinética , Células CACO-2 , Descoberta de Drogas , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Receptores CXCR3/metabolismo
20.
Bioorg Med Chem ; 24(21): 5206-5220, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27624526

RESUMO

Previously we described a novel series of pyrimidinol antioxidants and their structural optimization as potential therapeutic agents for neurodegenerative and mitochondrial disorders. Our initial lead compound was a potent antioxidant in vitro, but was subsequently found to exhibit poor stability to oxidative metabolism. The current study focused on balancing potency with metabolic stability through structural modification, and involved modifications at positions 2 and 4 of the pyrimidinol redox core, likely sites of oxidative metabolism. Eight new analogues have been prepared and their ability to suppress lipid peroxidation and reactive oxygen species (ROS), and to preserve mitochondrial membrane potential (Δψm) and support ATP production, has been investigated. The metabolic stability of the prepared compounds was also assessed in vitro using bovine liver microsomes to obtain preliminary insight on this class of compounds. This study revealed the complexity of balancing reasonable metabolic stability with efficient antioxidant properties. While a few analogues appear promising, especially in terms of metabolic stability, a 4-isopropoxy derivative conserved the favorable biological activity and exhibited good metabolic stability. The favorable metabolic stability conferred by the combination of the azetidine and isopropoxy moieties in analogue 6 makes this compound an excellent candidate for further evaluation.


Assuntos
Trifosfato de Adenosina/biossíntese , Antioxidantes/farmacologia , Microssomos Hepáticos/química , Mitocôndrias/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Pirimidinas/farmacologia , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Substâncias Protetoras/química , Substâncias Protetoras/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA