Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biotechnol Bioeng ; 121(10): 3311-3318, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38973124

RESUMO

Fast diagnostic methods are crucial to reduce the burden on healthcare systems. Currently, detection of diabetes complications such as neuropathy requires time-consuming approaches to observe the correlated red blood cells (RBCs) morphological changes. To tackle this issue, an optical analysis of RBCs in air was conducted in the 250-2500 nm range. The distinct oscillations present in the scattered and direct transmittance spectra have been analyzed with both Mie theory and anomalous diffraction approximation. The results provide information about the swelling at the ends of RBCs and directly relate the optical data to RBCs morphology and deformability. Both models agree on a reduction in the size and deformability of RBCs in diabetic patients, thus opening the way to diabetes diagnosis and disease progression assessment.


Assuntos
Eritrócitos , Eritrócitos/citologia , Humanos , Diabetes Mellitus/sangue , Diabetes Mellitus/patologia
2.
Small ; 19(37): e2301871, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144433

RESUMO

Self-assembled colloidal crystals display structural colors due to light diffracted from their microscale, ordered structure. This color arises due to Bragg reflection (BR) or grating diffraction (GD); the latter mechanism is much less explored than the former. Here the design space for generating GD structural color is identified and its relative advantages are demonstrated. Electrophoretic deposition is used to self-assemble crystals with fine crystal grains from colloids of diameter 1.0 µm. The structural color in transmission is tunable across the full visible spectrum. The optimum optical response-represented by both color intensity and saturation-is observed at low layer number (≤5 layers). The spectral response is well predicted by Mie scattering of the crystals. Taken together, the experimental and theoretical results demonstrate that vivid grating colors with high color saturation can be produced from thin layers of micron-sized colloids. These colloidal crystals extend the potential of artificial structural color materials.

3.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571674

RESUMO

In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications of the Mie scattering theory on the time domain for transient and point cloud levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the detection rate (DR), false detection rate (FDR), and distance error derror of the virtual LiDAR sensor due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage error (MAPE) is used to quantify the simulation and real measurement results on the time domain and point cloud levels for the rain and fog droplets. The results of the simulation and real measurements match well on the time domain and point cloud levels if the simulated and real rain distributions are the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog droplets than in rain.

4.
Photochem Photobiol Sci ; 21(2): 261-273, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35000185

RESUMO

Apple skin contains several groups of strongly absorbing cell organelles with pigments that change dynamically in type and concentration during fruit maturation. Chlorophylls and carotenoids, both primarily involved in photosynthesis, are found in the grana of chloroplasts, while anthocyanin vacuolar inclusions (AVIs) accumulate for light protection in red-skinned cultivars. A Mie model describing light scattering by absorbing spherical particles in a non-absorbing medium allowed to theoretically investigate the explicit influence of grana and AVIs on the effective scattering coefficient [Formula: see text] and the absorption coefficient [Formula: see text]. The reconstruction of the complex refractive indices of the organelles predicted anomalous dispersion, i.e., a local increase in the real part of the refractive index in the spectral regions with high chlorophyll and anthocyanin absorption, in agreement with the Kramers-Kronig relations. As a result, peaks in [Formula: see text] were predicted to be shifted to longer wavelengths compared to the corresponding [Formula: see text] bands. This selective scattering effect was confirmed experimentally with integrating sphere measurements for red- or green-skinned apple samples of the cultivars 'Elstar', 'Gala' or 'Jonagold'. Comparison between simulations and measurements indicated that the Soret bands of chlorophyll a and chlorophyll b are at 435 nm and 469 nm, respectively, and overlap with the absorption of carotenoids, whose red-most edge is at 488 nm. For anthocyanin absorption, a pronounced blue shift from 550 to 520 nm was observed, indicating structural or chemical changes of AVIs.


Assuntos
Malus , Antocianinas/química , Clorofila/química , Clorofila A/metabolismo , Cloroplastos/metabolismo , Luz , Malus/metabolismo
5.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613702

RESUMO

The aim of this paper is to provide a simple and efficient photoassisted approach to synthesize silver nanoparticles, and to elucidate the role of the key factors (synthesis parameters, such as the concentration of TSC, irradiation time, and UV intensity) that play a major role in the photochemical synthesis of silver nanoparticles using TSC, both as a reducing and stabilizing agent. Concomitantly, we aim to provide an easy way to evaluate the particle size based on Mie theory. One of the key advantages of this method is that the synthesis can be "activated" whenever or wherever silver nanoparticles are needed, by premixing the reactants and irradiating the final solution with UV radiation. UV irradiance was determined by using Keitz's theory. This argument has been verified by premixing the reagents and deposited them in an enclosed space (away from sunlight) at 25 °C, then checking them for three days. Nothing happened, unless the sample was directly irradiated by UV light. Further, obtained materials were monitored for 390 days and characterized using scanning electron microscopy, UV-VIS, and transmission electron microscopy.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Citrato de Sódio , Prata/química , Microscopia Eletrônica de Transmissão , Raios Ultravioleta
6.
Nano Lett ; 19(2): 793-804, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30616354

RESUMO

Understanding the uptake and transport dynamics of engineered nanomaterials (ENMs) by mammalian cells is an important step in designing next-generation drug delivery systems. However, to track these materials and their cellular interactions, current studies often depend on surface-bound fluorescent labels, which have the potential to alter native cellular recognition events. As a result, there is still a need to develop methods capable of monitoring ENM-cell interactions independent of surface modification. Addressing these concerns, here we show how scatter enhanced phase contrast (SEPC) microscopy can be extended to work as a generalized label-free approach for monitoring nanoparticle uptake and transport dynamics. To determine which materials can be studied using SEPC, we turn to Lorenz-Mie theory, which predicts that individual particles down to ∼35 nm can be observed. We confirm this experimentally, demonstrating that SEPC works for a variety of metal and metal oxides, including Au, Ag, TiO2, CeO2, Al2O3, and Fe2O3 nanoparticles. We then demonstrate that SEPC microscopy can be used in a quantitative, time-dependent fashion to discriminate between distinct modes of active cellular transport, including intracellular transport and membrane-assisted transport. Finally, we combine this technique with microcontact printing to normalize transport dynamics across multiple cells, allowing for a careful study of ensemble TiO2 nanoparticle uptake. This revealed three distinct regions of particle transport across the cell, indicating that membrane dynamics play an important role in regulating particle flow. By avoiding fluorescent labels, SEPC allows for a rational exploration of the surface properties of nanomaterials in their native state and their role in endocytosis and cellular transport.


Assuntos
Microscopia de Contraste de Fase/instrumentação , Nanopartículas/metabolismo , Transporte Biológico , Endocitose , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana , Humanos , Metais/análise , Metais/metabolismo , Microscopia de Contraste de Fase/métodos , Nanopartículas/análise , Óxidos/análise , Óxidos/metabolismo , Propriedades de Superfície
7.
J Microsc ; 270(2): 150-155, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29323420

RESUMO

Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index maps of weakly scattering, semi-transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid-induced optical anisotropy. We show that the nanoscale organization of lipids in the observation of cellular endocytosis with polarized light induces a significant change in far-field scattering. We obtain this result by presenting a general solution to Maxwell's equations describing light scattering of core-shell particles near an isotropic substrate covered with an anisotropic thin film. This solution is based on an extension of the Bobbert-Vlieger solution for particle scattering near a substrate delivering an exact solution to the scattering problem in the near field as well as far field. By applying this solution to study light scattering by a lipid vesicle near a lipid bilayer, whereby the lipids are represented through a biaxial optical model, we conclude through ellipsometry concepts that effective amounts of lipid-induced optical anisotropy significantly alter far-field optical scattering in respect to an equivalent optical model that neglects the presence of optical anisotropy.


Assuntos
Anisotropia , Endocitose , Exocitose , Imageamento Tridimensional/métodos , Microscopia de Interferência/métodos , Lipídeos
8.
J Quant Spectrosc Radiat Transf ; 217: 274-277, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30344341

RESUMO

A recently developed FORTRAN program computing far-field optical observables for spherical particles in an absorbing medium has exhibited numerical instability arising when the product of the particle vacuum size parameter and the imaginary part of the refractive index of the host becomes sufficiently large. We offer a simple analytical explanation of this instability and propose a compact numerical algorithm for the stable computation of Lorenz-Mie coefficients based on an upward recursion formula for spherical Hankel functions of a complex argument. Extensive tests confirm an excellent accuracy of this algorithm approaching machine precision. The improved public-domain FORTRAN program is available at https://www.giss.nasa.gov/staff/mmishchenko/Lorenz-Mie.html.

9.
J Synchrotron Radiat ; 24(Pt 6): 1209-1217, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091064

RESUMO

Plasmonic metal nanostructures have a significant impact on a diverse domain of fields, including photocatalysis, antibacterial, drug vector, biosensors, photovoltaic cell, optical and electronic devices. Metal nanoparticles (MNps) are the simplest nanostructure promising ultrahigh stability, ease of manufacturing and tunable optical response. Silver nanoparticles (AgNp) dominate in the class of MNps because of their relatively high abundance, chemical activity and unique physical properties. Although MNps offer the desired physical properties, most of the synthesis and fabrication methods lag at the electronic grade due to an unbidden secondary product as a result of the direct chemical reduction process. In this paper, a facile protocol is presented for fabricating high-yield in situ plasmonic AgNps under monochromatic X-rays irradiation, without the use of any chemical reducing agent which prevents the formation of secondary products. The ascendancy of this protocol is to produce high quantitative yield with control over the reaction rate, particle size and localized surface plasmon resonance response, and also to provide the feasibility for in situ characterization. The role of X-ray energy, beam flux and integrated dose towards the fabrication of plasmonic nanostructures has been studied. This experiment extends plasmonic research and provides avenues for upgrading production technologies of MNps.

10.
Cytometry A ; 87(11): 1029-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26115102

RESUMO

Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 µm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 µm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.


Assuntos
Citometria de Fluxo , Microesferas , Contagem de Células/métodos , Citometria de Fluxo/métodos , Fluorescência , Luz , Técnicas Analíticas Microfluídicas , Microfluídica/métodos , Saccharomyces cerevisiae , Espalhamento de Radiação , Análise de Célula Única/métodos
11.
J Xray Sci Technol ; 23(1): 111-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25567411

RESUMO

A method combining morphological granulometry with Mie theory to determine optical scattering in biological tissues was proposed. Otsu's method was applied to binarize phase-contrast images. Binary morphological granulometry was used to estimate size density distribution of the tissue samples based on the binary phase-contrast images. Our results showed that the optical parameters associated with light scattering in tissue could be quantitatively determined by combining size density distribution with Mie theory. It was suggested that this unique method could be used to characterize biological tissues for disease diagnosis.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Luz , Microscopia de Contraste de Fase/métodos , Modelos Biológicos , Refratometria/métodos , Espalhamento de Radiação , Simulação por Computador , Nefelometria e Turbidimetria/métodos
12.
ACS Nano ; 18(2): 1621-1628, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157441

RESUMO

Nano- and microparticles are popular media to enhance optical signals, including fluorescence from a dye proximal to the particle. Here we show that homogeneous, lossless, all-dielectric spheres with diameters in the mesoscale range, between nano- (≲100 nm) and micro- (≳1 µm) scales, can offer surprisingly large fluorescence enhancements, up to F ∼ 104. With the absence of nonradiative Ohmic losses inherent to plasmonic particles, we show that F can increase, decrease or even stay the same with increasing intrinsic quantum yield q0, for suppressed, enhanced or intact radiative decay rates of a fluorophore, respectively. Further, the fluorophore may be located inside or outside the particle, providing additional flexibility and opportunities to design fit for purpose particles. The presented analysis with simple dielectric spheres should spur further interest in this less-explored scale of particles and experimental investigations to realize their potential for applications in imaging, molecular sensing, light coupling, and quantum information processing.

13.
R Soc Open Sci ; 10(8): 230586, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564069

RESUMO

Accurate and fast characterization of the micron-sized plastic particles in aqueous media requires an in-depth understanding of light interaction with these particles. Due to the complexity of Mie scattering theory, the features of the scattered light have rarely been related to the physical properties of these tiny objects. To address this problem, we reveal the relation of the wavelength-dependent optical scattering patterns with the size and refractive index of the particles by numerically studying the angular scattering features. We subsequently present a low-cost setup to measure the optical scattering of the particles. Theoretical investigation shows that the angular distribution of the scattered light by microplastics carries distinct signatures of the particle size and the refractive index. The results can be used to develop a portable, low-cost setup to detect microplastics in water.

14.
Materials (Basel) ; 16(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903024

RESUMO

Coupling externally pumped gain materials with plasmonic spherical particles, even in the simplest case of a single spherical nanoparticle in a uniform gain medium, generates an incredibly rich variety of electrodynamic phenomena. The appropriate theoretical description of these systems is dictated by the quantity of the included gain and the size of the nano-particle. On the one hand, when the gain level is below the threshold separating the absorption and the emission regime, a steady-state approach is a rather adequate depiction, yet a time dynamic approach becomes fundamental when this threshold is exceeded. On the other hand, while a quasi-static approximation can be used to model nanoparticles when they are much smaller than the exciting wavelength, a more complete scattering theory is necessary to discuss larger nanoparticles. In this paper, we describe a novel method including a time-dynamical approach to the Mie scattering theory, which is able to account for all the most enticing aspects of the problem without any limitation in the particle's size. Ultimately, although the presented approach does not fully describe the emission regime yet, it does allow us to predict the transient states preceding emission and represents an essential step forward in the direction of a model able to adequately describe the full electromagnetic phenomenology of these systems.

15.
ACS Appl Mater Interfaces ; 15(43): 50106-50115, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853519

RESUMO

In situ energy generation in soft, flexible, autonomous devices is challenging due to the need for highly stretchable and fault-resistant components. Nanofluids with pyro-, tribo-, or thermoelectric properties have recently emerged as promising solutions for realizing liquid-based energy harvesters. Yet, large thermal gradients are required for the efficient performance of these systems. In this work, we show that oil-based plasmonic nanofluids uniquely combine high photothermal efficiency with strong heat localization. In particular, we report that oleic acid-based nanofluids containing TiN nanoclusters (0.3 wt %) exhibit 89% photothermal efficiency and can realize thermal gradients as large as 15.5 K/cm under solar irradiation. We experimentally and numerically investigate the photothermal behavior of the nanofluid as a function of solid fraction concentration and irradiation wavelength, clarifying the interplay of thermal and optical properties and demonstrating a dramatic improvement compared with water-based nanofluids. Overall, these results open unprecedented opportunities for the development of liquid-based energy generation systems for soft, stand-alone devices.

16.
J Biomed Opt ; 28(8): 086501, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37564163

RESUMO

Significance: Organelle sizes, which are indicative of cellular status, have implications for drug development and immunology research. At the single cell level, such information could be used to study the heterogeneity of cell response to drugs or pathogens. Aim: Angularly resolved elastic light scattering is known to be sensitive to changes in organelle size distribution. We developed a Mie theory-based simulation of angular scattering from single cells to quantify the effects of noise on scattering and size estimates. Approach: We simulated randomly sampled organelle sizes (drawn from a log normal distribution), interference between different organelles' scattering, and detector noise. We quantified each noise source's effect upon the estimated mean and standard deviation of organelle size distributions. Results: The results demonstrate that signal-to-noise ratio in the angular scattering increased with the number of scatterers, cell area, and exposure time and decreased with the size distribution width. The error in estimating the mean of the size distributions remained below 5% for nearly all experimental parameters tested, but the widest size distribution tested (standard deviation of 600 nm) reached 20%. Conclusions: The simulator revealed that sparse sampling of a broad size distribution can dominate the mismatch between actual and predicted size parameters. Alternative estimation strategies could reduce the discrepancy.


Assuntos
Luz , Organelas , Simulação por Computador , Razão Sinal-Ruído , Espalhamento de Radiação
17.
Materials (Basel) ; 16(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37176173

RESUMO

The contour intersection method is a new method used to invert the complex refractive index of small particles. Research has yet to be reported on using this method to invert the complex refractive index of nanoparticles. This paper reports the feasibility and reliability of the contour intersection method in the inversion of the complex refractive index of nanoparticles using Au-Ag alloy nanospheres. The Mie theory and the size-dependent dielectric function are used to calculate the light scattering and absorption efficiency of Au-Ag alloy nanospheres corresponding to the complex refractive index. The complex refractive index of the particles is obtained by inversion with the contour intersection method. The backscattering efficiency constraint method is used to determine the unique solution when multiple valid solutions from the contour intersection method appear. The effects of the Au component percentage, particle size, and measurement errors on the inversion results are quantitatively analyzed. Finally, the inversion accuracy is compared and analyzed with the traditional iterative method. The results show that as long as the light scattering efficiency, light absorption efficiency, and backscattering efficiency of Au nanospheres can be measured, the accurate complex refractive index can also be calculated by inversion using the contour intersection method. The accuracy of the inversion results can be ensured when the measurement error is less than 5%. The results of inversion using the contour intersection method are better than those of the iterative methods under the same conditions. This study provides a simple and reliable inversion method for measuring the complex refractive index of Au-Ag alloy nanospheres.

18.
Micromachines (Basel) ; 14(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138377

RESUMO

How nice would it be to obtain the size distribution of a nanoparticle dispersion fast and without electron microscope measurements? UV-Vis-NIR spectrophotometry offers a very rapid solution; however, the spectra interpretation can be very challenging and needs to take into account the size distribution of the nanoparticles and agglomeration. This work suggests a Monte Carlo method for rapid fitting UV-Vis-NIR spectra using one or two size distributions starting from a dataset of precomputed spectra based on Mie theory. The proposed algorithm is tested on copper nanoparticles produced with Pulsed Laser Ablation in Liquid and on gold nanoparticles from the literature. The fitted distribution results are comparable with Transmission Electron Microscope results and, in some cases, reflect the presence of agglomeration.

19.
Biosensors (Basel) ; 12(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323433

RESUMO

Aiming to develop a nanoparticle-based optical biosensor using gold nanoparticles (AuNPs) synthesized using green methods and supported by carbon-based nanomaterials, we studied the role of carbon derivatives in promoting AuNPs localized surface plasmon resonance (LSPR), as well as their morphology, dispersion, and stability. Carbon derivatives are expected to work as immobilization platforms for AuNPs, improving their analytical performance. Gold nanoparticles (AuNPs) were prepared using an eco-friendly approach in a single step by reduction of HAuCl4·3H2O using phytochemicals (from tea) which act as both reducing and capping agents. UV-Vis spectroscopy, transmission electron microscopy (TEM), zeta potential (ζ-potential), and X-ray photoelectron spectroscopy (XPS) were used to characterize the AuNPs and nanocomposites. The addition of reduced graphene oxide (rGO) resulted in greater dispersion of AuNPs on the rGO surface compared with carbon-based nanomaterials used as a support. Differences in morphology due to the nature of the carbon support were observed and are discussed here. AuNPs/rGO seem to be the most promising candidates for the development of LSPR biosensors among the three composites we studied (AuNPs/G, AuNPs/GO, and AuNPs/rGO). Simulations based on the Mie scattering theory have been used to outline the effect of the phytochemicals on LSPR, showing that when the presence of the residuals is limited to the formation of a thin capping layer, the quality of the plasmonic resonance is not affected. A further discussion of the application framework is presented.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro/química , Grafite/química , Nanopartículas Metálicas/química
20.
Photodiagnosis Photodyn Ther ; 39: 102979, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35728753

RESUMO

INTRODUCTION: Due to their biocompatible and plasmonic properties, gold nanoparticles (Au NPs) are good candidates to be photosensitizers in photothermal cancer therapy (PTT). MATERIALS AND METHODS: In this paper, the dependence of the NIR-light-to-heat energy on Au NPs size was investigated. Moreover, to determine the photosensitizing properties of gold nanoparticles, PTT was conducted on two colon cell lines: SW480 and SW620 by irradiating them with two lasers having different wavelengths. RESULTS: Transmission electron microscopy showed that the respective sizes of Au NPs were 10 nm, 12 nm and 16 nm. Moreover, local as well as global structural measurements showed that all synthesized Au NPs were crystalline and UV-Vis spectroscopy revealed that with increasing nanoparticles size the position of the surface Plasmon resonance (SPR) peaks is shifted to higher wavelengths. Decrease of cells viability was observed, when they were cultured with Au NPs and irradiated by 650 nm and 808 nm lasers. Moreover, FTIR and Raman spectra of cells, showed structural changes in DNA, phospholipids, proteins and cholesterol caused by the addition of nanoparticles and laser irradiation. The chemical changes were more pronounced in the cells cultured with Au NPs and irradiated by 650 nm lasers and these changes were dependent on the nanoparticle size. Moreover, the viability of cells investigated by the MTS assay showed, that the percentage of dead cells (∼40%) is the highest for cells cultured with 8 nm Au NPs and irradiated by the 650 nm laser. The photothermal conversion efficiency calculated from the experimental results showed a decrease of this parameter from 70% to 55% and from 61% to 48% with increasing particle size, for 650 nm and 808 nm lasers, respectively. CONCLUSIONS: The obtained results showed that the photothermal conversion efficiency of Au NPs is size-tunable, and can be correlated with the absorption/extinction ratios calculated by the Mie theory.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA