Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(18): 3866-3876.e2, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34352204

RESUMO

The emerging role of mitochondria as signaling organelles raises the question of whether individual mitochondria can initiate heterotypic communication with neighboring organelles. Using fluorescent probes targeted to the endoplasmic-reticulum-mitochondrial interface, we demonstrate that single mitochondria generate oxidative bursts, rapid redox oscillations, confined to the nanoscale environment of the interorganellar contact sites. Using probes fused to inositol 1,4,5-trisphosphate receptors (IP3Rs), we show that Ca2+ channels directly sense oxidative bursts and respond with Ca2+ transients adjacent to active mitochondria. Application of specific mitochondrial stressors or apoptotic stimuli dramatically increases the frequency and amplitude of the oxidative bursts by enhancing transient permeability transition pore openings. Conversely, blocking interface Ca2+ transport via elimination of IP3Rs or mitochondrial calcium uniporter channels suppresses ER-mitochondrial Ca2+ feedback and cell death. Thus, single mitochondria initiate local retrograde signaling by miniature oxidative bursts and, upon metabolic or apoptotic stress, may also amplify signals to the rest of the cell.


Assuntos
Mitocôndrias/metabolismo , Transporte Proteico/fisiologia , Explosão Respiratória/fisiologia , Cálcio/metabolismo , Canais de Cálcio , Sinalização do Cálcio/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução , Explosão Respiratória/genética , Análise de Célula Única/métodos
2.
Mol Cell ; 69(5): 757-772.e7, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499132

RESUMO

As most of the mitochondrial proteome is encoded in the nucleus, mitochondrial functions critically depend on nuclear gene expression and bidirectional mito-nuclear communication. However, mitochondria-to-nucleus communication pathways in mammals are incompletely understood. Here, we identify G-Protein Pathway Suppressor 2 (GPS2) as a mediator of mitochondrial retrograde signaling and a transcriptional activator of nuclear-encoded mitochondrial genes. GPS2-regulated translocation from mitochondria to nucleus is essential for the transcriptional activation of a nuclear stress response to mitochondrial depolarization and for supporting basal mitochondrial biogenesis in differentiating adipocytes and brown adipose tissue (BAT) from mice. In the nucleus, GPS2 recruitment to target gene promoters regulates histone H3K9 demethylation and RNA POL2 activation through inhibition of Ubc13-mediated ubiquitination. These findings, together, reveal an additional layer of regulation of mitochondrial gene transcription, uncover a direct mitochondria-nuclear communication pathway, and indicate that GPS2 retrograde signaling is a key component of the mitochondrial stress response in mammals.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Transdução de Sinais/fisiologia , Células 3T3-L1 , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metilação , Camundongos , Mitocôndrias/genética , Regiões Promotoras Genéticas/fisiologia , Ativação Transcricional/fisiologia
3.
Am J Physiol Cell Physiol ; 326(2): C442-C448, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009196

RESUMO

Smooth muscle cells transition reversibly between contractile and noncontractile phenotypes in response to diverse influences, including many from mitochondria. Numerous molecules including myocardin, procontractile miRNAs, and the mitochondrial protein prohibitin-2 promote contractile differentiation; this is opposed by mitochondrial reactive oxygen species (mtROS), high lactate concentrations, and metabolic reprogramming induced by mitophagy and/or mitochondrial fission. A major pathway through which vascular pathologies such as oncogenic transformation, pulmonary hypertension, and atherosclerosis cause loss of vascular contractility is by enhancing mitophagy and mitochondrial fission with secondary effects on smooth muscle phenotype. Proproliferative miRNAs and the mitochondrial translocase TOMM40 also attenuate contractile differentiation. Hypoxia can initiate loss of contractility by enhancing mtROS and lactate production while simultaneously depressing mitochondrial respiration. Mitochondria can reduce cytosolic calcium by moving it across the inner mitochondrial membrane via the mitochondrial calcium uniporter, and then through mitochondria-associated membranes to and from calcium stores in the sarcoplasmic/endoplasmic reticulum. Through these effects on calcium, mitochondria can influence multiple calcium-sensitive nuclear transcription factors and genes, some of which govern smooth muscle phenotype, and possibly also the production of genomically encoded mitochondrial proteins and miRNAs (mitoMirs) that target the mitochondria. In turn, mitochondria also can influence nuclear transcription and mRNA processing through mitochondrial retrograde signaling, which is currently a topic of intensive investigation. Mitochondria also can signal to adjacent cells by contributing to the content of exosomes. Considering these and other mechanisms, it is becoming increasingly clear that mitochondria contribute significantly to the regulation of smooth muscle phenotype and differentiation.


Assuntos
Cálcio , MicroRNAs , Cálcio/metabolismo , Músculo Liso Vascular/metabolismo , Mitocôndrias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fenótipo , Lactatos/metabolismo
4.
Biochem Biophys Res Commun ; 710: 149886, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581953

RESUMO

Mdivi-1, Mitochondrial DIVIsion inhibitor 1, has been widely employed in research under the assumption that it exclusively influences mitochondrial fusion, but effects other than mitochondrial dynamics have been underinvestigated. This paper provides transcriptome and DNA methylome-wide analysis for Mdivi-1 treated SH-SY5Y human neuroblastoma cells using RNA sequencing (RNA-seq) and methyl capture sequencing (MC-seq) methods. Gene ontology analysis of RNA sequences revealed that p53 transcriptional gene network and DNA replication initiation-related genes were significantly up and down-regulated, respectively, showing the correlation with the arrest cell cycle in the G1 phase. MC-seq, a powerful sequencing method for capturing DNA methylation status in CpG sites, revealed that although Mdivi-1 does not induce dramatic DNA methylation change, the subtle alterations were concentrated within the CpG island. Integrative analysis of both sequencing data disclosed that the p53 transcriptional network was activated while the Parkinson's disease pathway was halted. Next, we investigated several changes in mitochondria in response to Mdivi-1. Copy number and transcription of mitochondrial DNA were suppressed. ROS levels increased, and elevated ROS triggered mitochondrial retrograde signaling rather than inducing direct DNA damage. In this study, we could better understand the molecular network of Mdivi-1 by analyzing DNA methylation and mRNA transcription in the nucleus and further investigating various changes in mitochondria, providing inspiration for studying nuclear-mitochondrial communications.


Assuntos
Dinaminas , Neuroblastoma , Humanos , Dinaminas/metabolismo , Dinâmica Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Quinazolinonas/farmacologia
5.
New Phytol ; 238(1): 96-112, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36464787

RESUMO

Plant submergence stress is a growing problem for global agriculture. During desubmergence, rising O2 concentrations meet a highly reduced mitochondrial electron transport chain (mETC) in the cells. This combination favors the generation of reactive oxygen species (ROS) by the mitochondria, which at excess can cause damage. The cellular mechanisms underpinning the management of reoxygenation stress are not fully understood. We investigated the role of alternative NADH dehydrogenases (NDs), as components of the alternative mETC in Arabidopsis, in anoxia-reoxygenation stress management. Simultaneous loss of the matrix-facing NDs, NDA1 and NDA2, decreased seedling survival after reoxygenation, while overexpression increased survival. The absence of NDAs led to reduced maximum potential quantum efficiency of photosystem II linking the alternative mETC to photosynthetic function in the chloroplast. NDA1 and NDA2 were induced upon reoxygenation, and transcriptional activation of NDA1 was controlled by the transcription factors ANAC016 and ANAC017 that bind to the mitochondrial dysfunction motif (MDM) in the NDA1 promoter. The absence of NDA1 and NDA2 did not alter recovery of cytosolic ATP levels and NADH : NAD+ ratio at reoxygenation. Rather, the absence of NDAs led to elevated ROS production, while their overexpression limited ROS. Our observations indicate that the control of ROS formation by the alternative mETC is important for photosynthetic recovery and for seedling survival of anoxia-reoxygenation stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , NAD/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Fotossíntese , Oxirredutases/metabolismo , Hipóxia/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070491

RESUMO

During development of yeast colonies, various cell subpopulations form, which differ in their properties and specifically localize within the structure. Three branches of mitochondrial retrograde (RTG) signaling play a role in colony development and differentiation, each of them activating the production of specific markers in different cell types. Here, aiming to identify proteins and processes controlled by the RTG pathway, we analyzed proteomes of individual cell subpopulations from colonies of strains, mutated in genes of the RTG pathway. Resulting data, along with microscopic analyses revealed that the RTG pathway predominantly regulates processes in U cells, long-lived cells with unique properties, which are localized in upper colony regions. Rtg proteins therein activate processes leading to amino acid biosynthesis, including transport of metabolic intermediates between compartments, but also repress expression of mitochondrial ribosome components, thus possibly contributing to reduced mitochondrial translation in U cells. The results reveal the RTG pathway's role in activating metabolic processes, important in U cell adaptation to altered nutritional conditions. They also point to the important role of Rtg regulators in repressing mitochondrial activity in U cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Mitocôndrias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Vias Biossintéticas/genética , Cromatografia Líquida , Regulação Fúngica da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/genética , Proteômica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Análise de Célula Única , Espectrometria de Massas em Tandem
7.
Pharmacol Res ; 161: 105161, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32846213

RESUMO

Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.


Assuntos
Comunicação Celular , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Animais , Núcleo Celular/genética , Regulação da Expressão Gênica , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Transdução de Sinais
8.
J Bioenerg Biomembr ; 49(4): 335-341, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28417222

RESUMO

FOXO transcription factors are evolutionally conserved regulators of organismal life span downstream of insulin signaling. After integrating cellular signals from various stimuli such as growth factors, oxidative stress, and energy deprivation, FOXO factors induce expression of a specific set of genes that regulate various cellular processes to maintain homeostasis at a cellular or organismal level. In this review, we discuss roles of FOXO proteins in the maintenance of mitochondria, organelles critical for cellular quality control. FOXO factors protect mitochondria by activating mitochondrial antioxidant enzymes and they help remodel damaged mitochondria by inducing remodeling processes such as mitophagy. Furthermore, we also review the recently identified FOXO-dependent retrograde signaling from stressed mitochondria to the nucleus, which suggest that FOXO mediates the crosstalk between these two important organelles to maintain cell homeostasis. In addition, we introduce a mitohormetic role of gamitrinib-triphenylphosphonium (G-TPP), a mitochondrial heat shock protein (Hsp) inhibitor that can induce mild mitochondrial stress to protect cells from future insults in a FOXO-dependent manner.


Assuntos
Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Mitocôndrias/metabolismo , Animais , Homeostase , Humanos , Mitofagia , Receptor Cross-Talk
9.
Plant Commun ; : 101133, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39277791

RESUMO

Proper mitochondrial function is crucial to plant growth and development. Inhibition of mitochondrial translation leads to mitochondrial proteotoxic stress, which triggers a protective transcriptional response that regulates nuclear gene expression, commonly referred to as the mitochondrial unfolded protein response (UPRmt). Although UPRmt has been extensively studied in yeast and mammals, very little is known about UPRmt in plants. Here, we show that mitochondrial translational stress inhibits plant growth and development by inducing jasmonic acid (JA) biosynthesis and signaling. The inhibitory effect of mitochondrial translational stress on plant growth was alleviated in JA signaling defective mutants coi1-2, myc2, and myc234. Genetic analysis indicates that Arabidopsis mitochondrial ribosomal protein L1 (MRPL1), a key factor in UPRmt, regulates plant growth in a CORONATINE-INSENSITIVE1 (COI1)-dependent manner. Moreover, under mitochondrial translational stress, MYC2 showed direct binding to G-boxes in the ETHYLENE RESPONSE FACTOR 109 (ERF109) promoter. The induction of ERF109 expression enhances hydrogen peroxide (H2O2) production, which acts as a feedback loop to inhibit root growth. In addition, mutation of MRPL1 increases JA accumulation, reduces plant growth, and enhances biotic stress resistance. Overall, our findings reveal that JA plays an important role in mediating retrograde signaling under mitochondrial translational stress to balance plant growth and defense.

10.
Biomolecules ; 13(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759808

RESUMO

Glioblastoma (GBM) is the most common and aggressive malignant brain tumor with poor prognosis. Temozolomide (TMZ) is the standard chemotherapy for glioblastoma treatment, but TMZ resistance significantly compromises its efficacy. In the present study, we generated a TMZ-resistant cell line and identified that mitochondrial dysfunction was a novel factor contributing to TMZ resistance though multi-omics analyses and energy metabolism analysis. Furthermore, we found that rotenone treatment induced TMZ resistance to a certain level in glioblastoma cells. Notably, we further demonstrated that elevated Ca2+ levels and JNK-STAT3 pathway activation contributed to TMZ resistance and that inhibiting JNK or STAT3 increases susceptibility to TMZ. Taken together, our results indicate that co-administering TMZ with a JNK or STAT3 inhibitor holds promise as a potentially effective treatment for glioblastoma.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Multiômica , Encéfalo , Mitocôndrias
11.
Plant Sci ; 319: 111244, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487653

RESUMO

Mitochondrial retrograde signaling (MRS) plays an essential role in sensing and responding to internal and external stimuli to optimize growth to adapt to the prevailing environmental conditions. Previously studies showed alterations on MRS in cytoplasmic male sterile (CMS) plant. However, the regulators involved in MRS in CMS plants remain largely unknown. In this study, we used alternative oxidase 1a (AOX1a) as an indicator of MRS and found that the expression of AOX1a was significantly downregulated in a CMS line comparing to its revertant line, thus indicating an alteration in MRS in the CMS line. By performing a BLAST search of known regulatory components involved in MRS in yeast, we identified general regulatory factor 3 (GRF3), an orthologue of Bmh1/2 in yeast, and demonstrated an association between this gene and MRS in plants, as evidenced by change in AOX1a expression. GRF3 protein was found to be located in the nucleus and the plasma membrane. Further studies showed that GRF3 interacted with MYB29, and regulated the biosynthesis of glucosinolates in Brassica juncea. These findings revealed that GRF3, a negative regulator of AOX1a, is involved in MRS, and also plays a vital role in the accumulation of glucosinolates in CMS crops.


Assuntos
Glucosinolatos , Mostardeira , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas Mitocondriais , Mostardeira/genética , Oxirredutases , Proteínas de Plantas , Saccharomyces cerevisiae/genética
12.
Antioxidants (Basel) ; 10(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200581

RESUMO

Although the sporadic form of Alzheimer's disease (AD) is the prevalent form, the cellular events underlying the disease pathogenesis have not been fully characterized. Accumulating evidence points to mitochondrial dysfunction as one of the events responsible for AD progression. We investigated mitochondrial function in fibroblasts collected from patients diagnosed with the sporadic form of AD (sAD), placing a particular focus on mitochondrial turnover. We measured mitochondrial biogenesis and autophagic clearance, and evaluated the presence of bioenergetic stress in sAD cells. The mitochondrial turnover was clearly lower in the fibroblasts from sAD patients than in the fibroblasts from the control subjects, and the levels of many proteins regulating mitochondrial biogenesis, autophagy and mitophagy were decreased in patient cells. Additionally, the sAD fibroblasts had slightly higher mitochondrial superoxide levels and impaired antioxidant defense. Mitochondrial turnover undergoes feedback regulation through mitochondrial retrograde signaling, which is responsible for the maintenance of optimal mitochondrial functioning, and mitochondria-derived ROS participate as signaling molecules in this process. Our results showed that in sAD patients cells, there is a shift in the balance of mitochondrial function, possibly in response to the presence of cellular stress related to disease development.

13.
Front Neurosci ; 15: 769331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795558

RESUMO

Mitochondrial dysfunction plays a significant role in the pathogenesis of Parkinson's disease (PD). Consistent with this concept, loss of function mutations in the serine/threonine kinase- PINK1 (PTEN-induced putative kinase-1) causes autosomal recessive early onset PD. While the functional role of f-PINK1 (full-length PINK1) in clearing dysfunctional mitochondria via mitophagy is extensively documented, our understanding of specific physiological roles that the non-mitochondrial pool of PINK1 imparts in neurons is more limited. PINK1 is proteolytically processed in the intermembrane space and matrix of the mitochondria into functional cleaved products (c-PINK1) that are exported to the cytosol. While it is clear that posttranslational processing of PINK1 depends on the mitochondria's oxidative state and structural integrity, the functional roles of c-PINK1 in modulating neuronal functions are poorly understood. Here, we review the diverse roles played by c-PINK1 in modulating various neuronal functions. Specifically, we describe the non-canonical functional roles of PINK1, including but not limited to: governing mitochondrial movement, neuronal development, neuronal survival, and neurogenesis. We have published that c-PINK1 stimulates neuronal plasticity and differentiation via the PINK1-PKA-BDNF signaling cascade. In addition, we provide insight into how mitochondrial membrane potential-dependent processing of PINK1 confers conditional retrograde signaling functions to PINK1. Further studies delineating the role of c-PINK1 in neurons would increase our understanding regarding the role played by PINK1 in PD pathogenesis.

14.
Metabolism ; 95: 84-92, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30974111

RESUMO

OBJECTIVE: Mitochondria play pivotal roles in orchestrating signaling pathways in order to guarantee metabolic homeostasis under different stimuli. It has been demonstrated that the mito-nuclear communication is fundamental for facing physiological and/or stress-mediated cellular response through the activation of nuclear transcription factors. Here, we focused on the Forkhead box protein O1 (FoxO1) transcription factor that belongs to the FoxOs family proteins and is considered a "nutrients sensor" modulating the expression of nutrient-stress response genes. METHODS: In vitro and in vivo experimental systems, including 3T3-L1 white, X-9 beige and T37i brown adipocytes and different fat depots from C57BL/6 mice were used. The mitochondrial localization of FoxO1 was demonstrated by western blot analysis, confocal microscopy and chromatin immunoprecipitation assay, after sub-cellular compartment isolation. RT-qPCR analysis was used to evaluate the expression of antioxidant and mitochondrial genes after modulation of FoxO1 activity/localization. Treatment with diverse reactive oxygen species (ROS) species/sources were performed and assessed by cytofluorimetric analysis. RESULTS: We demonstrated that FoxO1 not exclusively localizes to cytosol and nucleus of adipocytes but also to mitochondria where it binds to mitochondrial DNA. We also proved that mitochondrial FoxO1 is phosphorylated upon normal feeding condition. Mitochondrial FoxO1 responds to starvation leaving mitochondrial compartment by ROS-mediated activation of the mitochondrial phosphatase PTPMT1. Indeed, FoxO1 de-phosphorylation and mito-to-nucleus shuttling was observed under starvation. Moreover, we provided evidence that ROS species/sources are able to differently modulate the mitochondrial localization of FoxO1. CONCLUSION: The ability to localize at different cell compartments, including mitochondria, highlights a different layer of regulation of FoxO1 necessary for assuring a fast and efficient nutrient-stress response in white/beige adipose tissue. FoxO1 could be thus endorsed in the list of transcription factors involved in the mito-nuclear communication where ROS can act as upstream signals.


Assuntos
Tecido Adiposo/metabolismo , Proteína Forkhead Box O1/metabolismo , Mitocôndrias/metabolismo , Células 3T3 , Adipócitos/metabolismo , Animais , Antioxidantes/metabolismo , Restrição Calórica , Núcleo Celular/metabolismo , Citosol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
15.
Front Plant Sci ; 10: 242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915089

RESUMO

Zea mays Brittle1-1 (ZmBT1-1) is an essential component of the starch biosynthetic machinery in maize endosperms, enabling ADPglucose transport from cytosol to amyloplast in exchange for AMP or ADP. Although ZmBT1-1 has been long considered to be an amyloplast-specific marker, evidence has been provided that ZmBT1-1 is dually localized to plastids and mitochondria (Bahaji et al., 2011b). The mitochondrial localization of ZmBT1-1 suggested that this protein may have as-yet unidentified function(s). To understand the mitochondrial ZmBT1-1 function(s), we produced and characterized transgenic Zmbt1-1 plants expressing ZmBT1-1 delivered specifically to mitochondria. Metabolic and differential proteomic analyses showed down-regulation of sucrose synthase (SuSy)-mediated channeling of sucrose into starch metabolism, and up-regulation of the conversion of sucrose breakdown products generated by cell wall invertase (CWI) into ethanol and alanine, in Zmbt1-1 endosperms compared to wild-type. Electron microscopic analyses of Zmbt1-1 endosperm cells showed gross alterations in the mitochondrial ultrastructure. Notably, the protein expression pattern, metabolic profile, and aberrant mitochondrial ultrastructure of Zmbt1-1 endosperms were rescued by delivering ZmBT1-1 specifically to mitochondria. Results presented here provide evidence that the reduced starch content in Zmbt1-1 endosperms is at least partly due to (i) mitochondrial dysfunction, (ii) enhanced CWI-mediated channeling of sucrose into ethanol and alanine metabolism, and (iii) reduced SuSy-mediated channeling of sucrose into starch metabolism due to the lack of mitochondrial ZmBT1-1. Our results also strongly indicate that (a) mitochondrial ZmBT1-1 is an important determinant of the metabolic fate of sucrose entering the endosperm cells, and (b) plastidic ZmBT1-1 is not the sole ADPglucose transporter in maize endosperm amyloplasts. The possible involvement of mitochondrial ZmBT1-1 in exchange between intramitochondrial AMP and cytosolic ADP is discussed.

16.
Front Oncol ; 7: 295, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250487

RESUMO

Epithelial-to-mesenchymal transition (EMT) allows epithelial cancer cells to assume mesenchymal features, endowing them with enhanced motility and invasiveness, thus enabling cancer dissemination and metastatic spread. The induction of EMT is orchestrated by EMT-inducing transcription factors that switch on the expression of "mesenchymal" genes and switch off the expression of "epithelial" genes. Mitochondrial dysfunction is a hallmark of cancer and has been associated with progression to a metastatic and drug-resistant phenotype. The mechanistic link between metastasis and mitochondrial dysfunction is gradually emerging. The discovery that mitochondrial dysfunction owing to deregulated mitophagy, depletion of the mitochondrial genome (mitochondrial DNA) or mutations in Krebs' cycle enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, activate the EMT gene signature has provided evidence that mitochondrial dysfunction and EMT are interconnected. In this review, we provide an overview of the current knowledge on the role of different types of mitochondrial dysfunction in inducing EMT in cancer cells. We place emphasis on recent advances in the identification of signaling components in the mito-nuclear communication network initiated by dysfunctional mitochondria that promote cellular remodeling and EMT activation in cancer cells.

17.
Oncotarget ; 7(13): 15299-314, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26992228

RESUMO

Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and Bmh1p/Bmh2p. Using differentiated yeast colonies, we show that Mks1p-Rtg pathway regulation is complex and includes three branches that divergently regulate the properties and fate of three specifically localized cell subpopulations via signals from differently altered mitochondria. The newly identified RTG pathway-regulated genes ATO1/ATO2 are expressed in colonial upper (U) cells, the cells with active TORC1 that metabolically resemble tumor cells, while CIT2 is a typical target induced in one subpopulation of starving lower (L) cells. The viability of the second L cell subpopulation is strictly dependent on RTG signaling. Additional co-activators of Rtg1p-Rtg3p specific to particular gene targets of each branch are required to regulate cell differentiation.


Assuntos
Sobrevivência Celular/fisiologia , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , Diferenciação Celular/fisiologia , Genes Fúngicos/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Cell Discov ; 2: 16045, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990297

RESUMO

Reduced mitochondrial DNA copy number, mitochondrial DNA mutations or disruption of electron transfer chain complexes induce mitochondria-to-nucleus retrograde signaling, which induces global change in nuclear gene expression ultimately contributing to various human pathologies including cancer. Recent studies suggest that these mitochondrial changes cause transcriptional reprogramming of nuclear genes although the mechanism of this cross talk remains unclear. Here, we provide evidence that mitochondria-to-nucleus retrograde signaling regulates chromatin acetylation and alters nuclear gene expression through the heterogeneous ribonucleoprotein A2 (hnRNAP2). These processes are reversed when mitochondrial DNA content is restored to near normal cell levels. We show that the mitochondrial stress-induced transcription coactivator hnRNAP2 acetylates Lys 8 of H4 through an intrinsic histone lysine acetyltransferase (KAT) activity with Arg 48 and Arg 50 of hnRNAP2 being essential for acetyl-CoA binding and acetyltransferase activity. H4K8 acetylation at the mitochondrial stress-responsive promoters by hnRNAP2 is essential for transcriptional activation. We found that the previously described mitochondria-to-nucleus retrograde signaling-mediated transformation of C2C12 cells caused an increased expression of genes involved in various oncogenic processes, which is retarded in hnRNAP2 silenced or hnRNAP2 KAT mutant cells. Taken together, these data show that altered gene expression by mitochondria-to-nucleus retrograde signaling involves a novel hnRNAP2-dependent epigenetic mechanism that may have a role in cancer and other pathologies.

19.
Ann N Y Acad Sci ; 1364: 52-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25800988

RESUMO

Mitochondrial dysfunction has emerged as an important factor in wide ranging human pathologies. We have previously defined a retrograde signaling pathway that originates from dysfunctional mitochondria (Mt-RS) and causes a global nuclear transcriptional reprograming as its end point. Mitochondrial dysfunction causing disruption of mitochondrial membrane potential and consequent increase in cytosolic calcium [Ca(2) ](c) activates calcineurin and the transcription factors NF-κB, NFAT, CREB, and C/EBPδ. In macrophages, this signaling complements receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastic differentiation. Here, we show that the Mt-RS activated transcriptional coactivator heterogeneous ribonucleoprotein A2 (hnRNP A2) is induced by hypoxia in murine macrophages. We demonstrate that the cathepsin K gene (Ctsk), one of the key genes upregulated during osteoclast differentiation, is transcriptionally activated by Mt-RS factors. HnRNP A2 acts as a coactivator with nuclear transcription factors, cRel, and C/EBPδ for Ctsk promoter activation under hypoxic conditions. Notably, our study shows that hypoxia-induced activation of the stress target factors mediates effects similar to that of RANKL with regard to Ctsk activation. We therefore suggest that mitochondrial dysfunction and activation of Mt-RS, induced by various pathophysiologic conditions, is a potential risk factor for osteoclastogenesis and bone loss.


Assuntos
Catepsina K/metabolismo , Mitocôndrias/metabolismo , Osteoclastos/metabolismo , Osteogênese , Regiões Promotoras Genéticas , Transdução de Sinais , Animais , Proteína delta de Ligação ao Facilitador CCAAT/antagonistas & inibidores , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Catepsina K/antagonistas & inibidores , Catepsina K/química , Catepsina K/genética , Hipóxia Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Genes Reporter , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Camundongos , Mitocôndrias/enzimologia , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteoclastos/enzimologia , Ligante RANK/metabolismo , Células RAW 264.7 , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ativação Transcricional
20.
Protein Cell ; 6(12): 862-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26084519

RESUMO

Mitochondrial genome is responsible for multiple human diseases in a maternal inherited pattern, yet phenotypes of patients in a same pedigree frequently vary largely. Genes involving in epigenetic modification, RNA processing, and other biological pathways, rather than "threshold effect" and environmental factors, provide more specific explanation to the aberrant phenotype. Thus, the double hit theory, mutations both in mitochondrial DNA and modifying genes aggravating the symptom, throws new light on mitochondrial dysfunction processes. In addition, mitochondrial retrograde signaling pathway that leads to reconfiguration of cell metabolism to adapt defects in mitochondria may as well play an active role. Here we review selected examples of modifier genes and mitochondrial retrograde signaling in mitochondrial disorders, which refine our understanding and will guide the rational design of clinical therapies.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Mutação , Animais , Humanos , Doenças Mitocondriais/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA