Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Bioorg Chem ; 150: 107588, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936051

RESUMO

With the advent of mitochondrial targeting moiety such as triphenlyphosphonium cation (TPP+), targeting mitochondria in cancer cells has become a promising strategy for combating tumors. Herein, a series of novel 4-aryl-1,3-thiazole derivatives linked to TPP+ moiety were designed and synthesized. The cytotoxicity against a panel of four cancer cell lines was evaluated by CCK-8 assay. Most of these compounds exhibited moderate to good inhibitory activity over HeLa, PC-3 and HCT-15 cells while MCF-7 cells were less sensitive to most compounds. Among them, compound 12a exhibited a significant anti-proliferative activity against HeLa cells, and prompted for further investigation. Specifically, 12a decreased mitochondrial membrane potential and enhanced levels of reactive oxygen species (ROS). The flow cytometry analysis revealed that compound 12a could induce apoptosis and cell cycle arrest at G0/G1 phase in HeLa cells. In addition, mitochondrial bioenergetics assay revealed that 12a displayed mild mitochondrial uncoupling effect. Taken together, these findings suggest the therapeutic potential of compound 12a as an antitumor agent targeting mitochondria.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Potencial da Membrana Mitocondrial , Mitocôndrias , Espécies Reativas de Oxigênio , Tiazóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Estrutura Molecular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Compostos Organofosforados/farmacologia , Compostos Organofosforados/química , Compostos Organofosforados/síntese química
2.
Proc Biol Sci ; 290(2009): 20231768, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876201

RESUMO

Climate change often includes increases in the occurrence of extreme environmental events. Among these, heatwaves affect the pace of life and performance of wildlife, particularly ectothermic animals, owing to their low thermoregulatory abilities. However, the underlying mechanisms by which this occurs remain unclear. Evidence shows that heatwaves alter the redox balance of ectotherms, and oxidative stress is a major mediator of life-history trade-offs. Therefore, oxidative stress may mediate the effect of extreme thermal conditions on the life histories of ectotherms. To test this hypothesis, a 2 × 2 experiment was conducted to manipulate the redox balance (through a mitochondrial uncoupler that alleviates oxidative stress) of the desert toad-headed agama (Phrynocephalus przewalskii) exposed to heatwave conditions. We recorded lizard growth and survival rates and quantified their redox and immune statuses. In control lizards (unmanipulated redox balance), heatwave conditions decreased growth and survival and induced oxidative damage and immune responses. By contrast, lizards with alleviated oxidative stress showed close-to-normal growth, survival, and immune status when challenged with heatwaves. These results provide mechanistic insight into the role of oxidative stress in mediating the effects of extreme temperatures on ectothermic vertebrates, which may have major eco-evolutionary implications.


Assuntos
Lagartos , Animais , Lagartos/fisiologia , Temperatura Alta , Mudança Climática , Regulação da Temperatura Corporal , Estresse Oxidativo
3.
Arch Biochem Biophys ; 746: 109735, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652149

RESUMO

The popular fungicide fluazinam is known to exhibit an unusual cyclic pattern of the protonophoric uncoupling activity in isolated rat liver mitochondria (RLM), with membrane deenergization followed by spontaneous recoupling in the minute scale, which is associated with glutathione conjugation of fluazinam catalyzed by glutathione-S-transferase (GST). Here, we compare the fluazinam effect on RLM with that on rat kidney (RKM) and heart (RHM) mitochondria by monitoring three bioenergetic parameters: oxygen consumption rate, mitochondrial membrane potential and reduction of nucleotides. Only in RLM, the uncoupling activity of fluazinam was transient, i.e. disappeared in a few minutes, whereas in RKM and RHM it was stable in this time scale. We attribute this difference to the increased activity of mitochondrial GST in liver. We report data on the detection of glutathione-fluazinam conjugates by mass-spectrometry, thin layer chromatography and capillary electrophoresis after incubation of fluazinam with RLM but not with RKM, which supports the assumption of the tissue specificity of the conjugation.


Assuntos
Fungicidas Industriais , Animais , Ratos , Fígado , Mitocôndrias , Glutationa , Glutationa Transferase
4.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555847

RESUMO

Usnic acid (UA), a unique lichen metabolite, is a protonophoric uncoupler of oxidative phosphorylation, widely known as a weight-loss dietary supplement. In contrast to conventional proton-shuttling mitochondrial uncouplers, UA was found to carry protons across lipid membranes via the induction of an electrogenic proton exchange for calcium or magnesium cations. Here, we evaluated the ability of various divalent metal cations to stimulate a proton transport through both planar and vesicular bilayer lipid membranes by measuring the transmembrane electrical current and fluorescence-detected pH gradient dissipation in pyranine-loaded liposomes, respectively. Thus, we obtained the following selectivity series of calcium, magnesium, zinc, manganese and copper cations: Zn2+ > Mn2+ > Mg2+ > Ca2+ >> Cu2+. Remarkably, Cu2+ appeared to suppress the UA-mediated proton transport in both lipid membrane systems. The data on the divalent metal cation/proton exchange were supported by circular dichroism spectroscopy of UA in the presence of the corresponding cations.


Assuntos
Cálcio , Prótons , Cálcio/metabolismo , Magnésio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Bicamadas Lipídicas/química , Cátions/metabolismo , Cátions Bivalentes/metabolismo
5.
J Lipid Res ; 61(12): 1565-1576, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32907986

RESUMO

Microsomal triglyceride transfer protein (MTTP) deficiency results in a syndrome of hypolipidemia and accelerated NAFLD. Animal models of decreased hepatic MTTP activity have revealed an unexplained dissociation between hepatic steatosis and hepatic insulin resistance. Here, we performed comprehensive metabolic phenotyping of liver-specific MTTP knockout (L-Mttp-/-) mice and age-weight matched wild-type control mice. Young (10-12-week-old) L-Mttp-/- mice exhibited hepatic steatosis and increased DAG content; however, the increase in hepatic DAG content was partitioned to the lipid droplet and was not increased in the plasma membrane. Young L-Mttp-/- mice also manifested normal hepatic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamps, no PKCε activation, and normal hepatic insulin signaling from the insulin receptor through AKT Ser/Thr kinase. In contrast, aged (10-month-old) L-Mttp-/- mice exhibited glucose intolerance and hepatic insulin resistance along with an increase in hepatic plasma membrane sn-1,2-DAG content and PKCε activation. Treatment with a functionally liver-targeted mitochondrial uncoupler protected the aged L-Mttp-/- mice against the development of hepatic steatosis, increased plasma membrane sn-1,2-DAG content, PKCε activation, and hepatic insulin resistance. Furthermore, increased hepatic insulin sensitivity in the aged controlled-release mitochondrial protonophore-treated L-Mttp-/- mice was not associated with any reductions in hepatic ceramide content. Taken together, these data demonstrate that differences in the intracellular compartmentation of sn-1,2-DAGs in the lipid droplet versus plasma membrane explains the dissociation of NAFLD/lipid-induced hepatic insulin resistance in young L-Mttp-/- mice as well as the development of lipid-induced hepatic insulin resistance in aged L-Mttp-/- mice.


Assuntos
Proteínas de Transporte/genética , Membrana Celular/metabolismo , Diglicerídeos/metabolismo , Técnicas de Inativação de Genes , Resistência à Insulina , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia
6.
Bioorg Med Chem Lett ; 30(8): 127057, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113842

RESUMO

Mitochondrial protonophores transport protons through the mitochondrial inner membrane into the matrix to uncouple nutrient oxidation from ATP production thereby decreasing the proton motive force. Mitochondrial uncouplers have beneficial effects of decrease reactive oxygen species generation and have the potential for treating diseases such as obesity, neurodegenerative diseases, non-alcoholic fatty liver disease (NAFLD), diabetes, and many others. In this study, we report the structure-activity relationship profile of the pyrazine scaffold bearing substituted aniline rings. Our work indicates that a trifluoromethyl group is best at the para position while the trifluoromethoxy group is preferred in the meta position of the aniline rings of 2,3-substituted pyrazines. As proton transport and cycling requires the formation of a negative charge that has to traverse the mitochondrial membrane, a stabilizing internal hydrogen bond is a key feature for efficient mitochondrial uncoupling activity.


Assuntos
Compostos de Anilina/farmacologia , Mitocôndrias/efeitos dos fármacos , Pirazinas/farmacologia , Desacopladores/farmacologia , Compostos de Anilina/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Pirazinas/química , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Desacopladores/química
7.
Biol Pharm Bull ; 43(8): 1210-1219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741941

RESUMO

Intracerebral hemorrhage (ICH) is a disease with high disability and mortality rates. Currently, the efficacy of therapies available for ICH is limited. Microglia-mediated neuroinflammation substantially exacerbates brain damage following ICH. Here, we investigated whether mitochondrial uncouplers conferred protection by suppressing neuroinflammation following ICH. To mimic ICH-induced neuroinflammation in vitro, we treated microglia with red blood cell (RBC) lysate. RBC lysate enhanced the expression of pro-inflammatory cytokines in microglia. A clinically used uncoupler, niclosamide (Nic), reduced the RBC lysate-induced expression of pro-inflammatory cytokines in microglia. Moreover, Nic ameliorated brain edema, decreased neuroinflammation, and improved neurological deficits in a well-established mouse model of ICH. Like niclosamide, the structurally unrelated uncoupler carbonyl cyanide p-triflouromethoxyphenylhydrazone (FCCP) reduced brain edema, decreased neuroinflammation, and improved neurological deficits following ICH. It has been reported that mitochondrial uncouplers activate AMP-activated protein kinase (AMPK). Mechanistically, Nic enhanced AMPK activation following ICH, and AMPK knockdown abolished the beneficial effects of Nic following ICH. In conclusion, mitochondrial uncouplers conferred protection by activating AMPK to inhibit microglial neuroinflammation following ICH.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Hemorragia Cerebral/tratamento farmacológico , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Niclosamida/farmacologia , Desacopladores/farmacologia , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Cultivadas , Camundongos , Microglia/efeitos dos fármacos , Niclosamida/uso terapêutico
8.
Eat Weight Disord ; 24(1): 91-96, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28780747

RESUMO

PURPOSE: Obesity and type 2 diabetes (T2D) have become the major public health challenges globally. Mitochondrial uncoupling, which reduces intracellular lipid loads and corrects the underlying cause of insulin resistance, has emerged as a promising anti-obese and anti-diabetic intervention. Niclosamide is an anthelmintic drug approved by the US FDA with the mechanism of action that uncouples mitochondria of parasitic worms. Recently, niclosamide ethanolamine salt (NEN) was found to be a safe and effective hepatic mitochondrial uncoupler for the prevention and treatment of obesity and T2D in mouse models. The striking features of NEN prompt us to examine the anti-obese and anti-diabetic efficacy of other salt forms of niclosamide, with the ultimate goal to identify a suitable salt formulation for future clinical development. Here, we report the study with niclosamide piperazine salt (NPP), another salt form of niclosamide with documented safety profile. METHODS: Mitochondrial uncoupling activity of NEN and NPP were determined by oxygen consumption assay with Seahorse XF24e Analyzer, as well as by mitochondrial membrane potential measurement in cultured cells. The in vivo anti-diabetic and anti-obesity activities were determined in C57BL/6J mice fed high-fat diet (HFD) or HFD containing 2000 ppm. NPP for 11 weeks. RESULTS: Niclosamide piperazine salt showed a comparable mitochondrial uncoupling activity to NEN. Oral administration of NPP significantly reduced HFD-induced obesity, hyperglycemia and hepatic steatosis, and sensitized the insulin responses in mice. CONCLUSIONS: Niclosamide piperazine salt may hold the promise to become an alternative to NEN as a drug lead for the treatment of obesity and T2D. No level of evidence Animal study.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Niclosamida/uso terapêutico , Obesidade/prevenção & controle , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Resistência à Insulina/fisiologia , Camundongos , Mitocôndrias/metabolismo , Niclosamida/farmacologia , Obesidade/etiologia , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos
9.
Biochim Biophys Acta Biomembr ; 1860(5): 1000-1007, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29317196

RESUMO

The formerly widely used broad-spectrum biocide triclosan (TCS) has now become a subject of special concern due to its accumulation in the environment and emerging diverse toxicity. Despite the common opinion that TCS is an uncoupler of oxidative phosphorylation in mitochondria, there have been so far no studies of protonophoric activity of this biocide on artificial bilayer lipid membranes (BLM). Yet only few works have indicated the relationship between TCS impacts on mitochondria and nerve cell functioning. Here, we for the first time report data on a high protonophoric activity of TCS on planar BLM. TCS proved to be a more effective protonophore on planar BLM, than classical uncouplers. Correlation between a strong depolarizing effect of TCS on bacterial membranes and its bactericidal action on Bacillus subtilis might imply substantial contribution of TCS protonophoric activity to its antimicrobial efficacy. Protonophoric activity of TCS, monitored by proton-dependent mitochondrial swelling, resulted in Ca2+ efflux from mitochondria. A comparison of TCS effects on molluscan neurons with those of conventional mitochondrial uncouplers allowed us to ascribe the TCS-induced neuronal depolarization and suppression of excitability to the consequences of mitochondrial deenergization. Also similar to the action of common uncouplers, TCS caused a pronounced increase in frequency of miniature end-plate potentials at neuromuscular junctions. Thus, the TCS-induced mitochondrial uncoupling could alter neuronal function through distortion of Ca2+ homeostasis.


Assuntos
Cálcio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Prótons , Triclosan/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Lymnaea , Potenciais da Membrana/fisiologia , Camundongos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Mitocôndrias Hepáticas/metabolismo , Dilatação Mitocondrial/efeitos dos fármacos , Dilatação Mitocondrial/fisiologia , Fosforilação Oxidativa/efeitos dos fármacos , Ratos , Desacopladores/farmacologia
10.
Gastroenterology ; 152(8): 2022-2036, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28284560

RESUMO

BACKGROUND & AIMS: Drug repositioning offers a shorter approval process than new drug development. We therefore searched large public datasets of drug-induced gene expression signatures to identify agents that might be effective against hepatocellular carcinoma (HCC). METHODS: We searched public databases of messenger RNA expression patterns reported from HCC specimens from patients, HCC cell lines, and cells exposed to various drugs. We identified drugs that might specifically increase expression of genes that are down-regulated in HCCs and reduce expression of genes up-regulated in HCCs using a nonparametric, rank-based pattern-matching strategy based on the Kolmogorov-Smirnov statistic. We evaluated the anti-tumor activity of niclosamide and its ethanolamine salt (NEN) in HCC cell lines (HepG2, Huh7, Hep3B, Hep40, and PLC/PRF/5), primary human hepatocytes, and 2 mouse models of HCC. In one model of HCC, liver tumor development was induced by hydrodynamic delivery of a sleeping beauty transposon expressing an activated form of Ras (v12) and truncated ß-catenin (N90). In another mouse model, patient-derived xenografts were established by implanting HCC cells from patients into livers of immunocompromised mice. Tumor growth was monitored by bioluminescence imaging. Tumor-bearing mice were fed a regular chow diet or a chow diet containing niclosamide or NEN. In a separate experiment using patient-derived xenografts, tumor-bearing mice were given sorafenib (the standard of care for patients with advanced HCC), NEN, or niclosamide alone; a combination of sorafenib and NEN; or a combination sorafenib and niclosamide in their drinking water, or regular water (control), and tumor growth was monitored. RESULTS: Based on gene expression signatures, we identified 3 anthelmintics that significantly altered the expression of genes that are up- or down-regulated in HCCs. Niclosamide and NEN specifically reduced the viability of HCC cells: the agents were at least 7-fold more cytotoxic to HCCs than primary hepatocytes. Oral administration of NEN to mice significantly slowed growth of genetically induced liver tumors and patient-derived xenografts, whereas niclosamide did not, coinciding with the observed greater bioavailability of NEN compared with niclosamide. The combination of NEN and sorafenib was more effective at slowing growth of patient-derived xenografts than either agent alone. In HepG2 cells and in patient-derived xenografts, administration of niclosamide or NEN increased expression of 20 genes down-regulated in HCC and reduced expression of 29 genes up-regulated in the 274-gene HCC signature. Administration of NEN to mice with patient-derived xenografts reduced expression of proteins in the Wnt-ß-catenin, signal transducer and activator of transcription 3, AKT-mechanistic target of rapamycin, epidermal growth factor receptor-Ras-Raf signaling pathways. Using immunoprecipitation assays, we found NEN to bind cell division cycle 37 protein and disrupt its interaction with heat shock protein 90. CONCLUSIONS: In a bioinformatics search for agents that alter the HCC-specific gene expression pattern, we identified the anthelmintic niclosamide as a potential anti-tumor agent. Its ethanolamine salt, with greater bioavailability, was more effective than niclosamide at slowing the growth of genetically induced liver tumors and patient-derived xenografts in mice. Both agents disrupted interaction between cell division cycle 37 and heat shock protein 90 in HCC cells, with concomitant inhibition of their downstream signaling pathways. NEN might be effective for treatment of patients with HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Chaperoninas/antagonistas & inibidores , Simulação por Computador , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Etanolamina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Chaperonas Moleculares/antagonistas & inibidores , Niclosamida/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Niclosamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sorafenibe , Fatores de Tempo , Transcriptoma , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Pharmacol Res ; 115: 78-86, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872020

RESUMO

We previously demonstrated that the typical mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) inhibited artery constriction, but CCCP was used only as a pharmacological tool. Niclosamide is an anthelmintic drug approved by FDA. Niclosamide ethanolamine (NEN) is a salt form of niclosamide and has been demonstrated to uncouple mitochondrial oxidative phosphorylation. The aim of the present study was to elucidate the vasoactivity of NEN and the potential mechanisms. Isometric tension of rat mesenteric artery and thoracic aorta was recorded by using multi-wire myograph system. The protein levels were measured by using western blot techniques. Niclosamide ethanolamine (NEN) treatment relaxed phenylephrine (PE)- and high K+ (KPSS)-induced constriction, and pre-treatment with NEN inhibited PE- and KPSS-induced constriction of rat mesenteric arteries. In rat thoracic aorta, NEN also showed antagonism against PE- and KPSS-induced constriction. NEN induced increase of cellular ADP/ATP ratio in vascular smooth muscle cells (A10) and activated AMP-activated protein kinase (AMPK) in A10 cells and rat thoracic aorta. NEN-induced aorta relaxation was attenuated in AMPKα1 knockout (-/-) mice. SERCA inhibitors cyclopiazonic acid and thapsigargin, but not KATP channel blockers glibenclamide and 5-hydroxydecanoic acid, attenuated NEN-induced vasorelaxation in rat mesenteric arteries. NEN treatment increased cytosolic [Ca2+]i and depolarized mitochondrial membrane potential in vascular smooth muscle cells (A10). Niclosamide in non-salt form showed the similar vasoactivity as NEN in rat mesenteric arteries. Niclosamide ethanolamine inhibits artery constriction, indicating that it would be promising to be developed as an anti-hypertensive drug or it would induce vasodilation-related side effects when absorbed in vivo.


Assuntos
Aorta Torácica/efeitos dos fármacos , Etanolamina/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Niclosamida/farmacologia , Vasoconstrição/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta Torácica/metabolismo , Canais KATP/antagonistas & inibidores , Masculino , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
12.
J Appl Toxicol ; 36(12): 1662-1667, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27111768

RESUMO

Triclosan (TCS) is a synthetic antimicrobial agent used in many consumer goods at millimolar concentrations. As a result of exposure, TCS has been detected widely in humans. We have recently discovered that TCS is a proton ionophore mitochondrial uncoupler in multiple types of living cells. Here, we present novel data indicating that TCS is also a mitochondrial uncoupler in a living organism: 24-hour post-fertilization (hpf) zebrafish embryos. These experiments were conducted using a Seahorse Bioscience XFe 96 Extracellular Flux Analyzer modified for bidirectional temperature control, using the XF96 spheroid plate to position and measure one zebrafish embryo per well. Using this method, after acute exposure to TCS, the basal oxygen consumption rate (OCR) increases, without a decrease in survival or heartbeat rate. TCS also decreases ATP-linked respiration and spare respiratory capacity and increases proton leak: all indicators of mitochondrial uncoupling. Our data indicate, that TCS is a mitochondrial uncoupler in vivo, which should be taken into consideration when assessing the toxicity and/or pharmaceutical uses of TCS. This is the first example of usage of a Seahorse Extracellular Flux Analyzer to measure bioenergetic flux of a single zebrafish embryo per well in a 96-well assay format. The method developed in this study provides a high-throughput tool to identify previously unknown mitochondrial uncouplers in a living organism. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Mitocôndrias/efeitos dos fármacos , Triclosan/toxicidade , Desacopladores/toxicidade , Peixe-Zebra , Animais , Relação Dose-Resposta a Droga , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Prótons , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
13.
J Appl Toxicol ; 36(6): 777-89, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26204821

RESUMO

Triclosan (TCS) is an antimicrobial used widely in hospitals and personal care products, at ~10 mm. Human skin efficiently absorbs TCS. Mast cells are ubiquitous key players both in physiological processes and in disease, including asthma, cancer and autism. We previously showed that non-cytotoxic levels of TCS inhibit degranulation, the release of histamine and other mediators, from rat basophilic leukemia mast cells (RBL-2H3), and in this study, we replicate this finding in human mast cells (HMC-1.2). Our investigation into the molecular mechanisms underlying this effect led to the discovery that TCS disrupts adenosine triphosphate (ATP) production in RBL-2H3 cells in glucose-free, galactose-containing media (95% confidence interval EC50 = 7.5-9.7 µm), without causing cytotoxicity. Using these same glucose-free conditions, 15 µm TCS dampens RBL-2H3 degranulation by 40%. The same ATP disruption was found with human HMC-1.2 cells (EC50 4.2-13.7 µm), NIH-3 T3 mouse fibroblasts (EC50 4.8-7.4 µm) and primary human keratinocytes (EC50 3.0-4.1 µm) all with no cytotoxicity. TCS increases oxygen consumption rate in RBL-2H3 cells. Known mitochondrial uncouplers (e.g., carbonyl cyanide 3-chlorophenylhydrazone) previously were found to inhibit mast cell function. TCS-methyl, which has a methyl group in place of the TCS ionizable proton, affects neither degranulation nor ATP production at non-cytotoxic doses. Thus, the effects of TCS on mast cell function are due to its proton ionophore structure. In addition, 5 µm TCS inhibits thapsigargin-stimulated degranulation of RBL-2H3 cells: further evidence that TCS disrupts mast cell signaling. Our data indicate that TCS is a mitochondrial uncoupler, and TCS may affect numerous cell types and functions via this mechanism. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Anti-Infecciosos Locais/farmacologia , Queratinócitos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Triclosan/farmacologia , Desacopladores/farmacologia , Animais , Anti-Infecciosos Locais/efeitos adversos , Anticarcinógenos/efeitos adversos , Anticarcinógenos/farmacologia , Carcinógenos/antagonistas & inibidores , Carcinógenos/toxicidade , Degranulação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Queratinócitos/metabolismo , Cinética , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Células NIH 3T3 , Ratos , Tapsigargina/antagonistas & inibidores , Tapsigargina/toxicidade , Triclosan/efeitos adversos , Triclosan/análogos & derivados , Desacopladores/efeitos adversos
14.
Bioorg Med Chem Lett ; 25(21): 4858-4861, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26119501

RESUMO

Chemical mitochondrial uncouplers are lipophilic weak acids that transport protons into the mitochondrial matrix via a pathway that is independent of ATP synthase, thereby uncoupling nutrient oxidation from ATP production. These uncouplers have potential for the treatment of diseases such as obesity, Parkinson's disease, and aging. We have previously identified a novel mitochondrial protonophore, named BAM15, which stimulates mitochondrial respiration across a broad dosing range compared to carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Herein, we report our investigations on the structure-activity relationship profile of BAM15. Our studies demonstrate the importance of the furazan, pyrazine, and aniline rings as well as pKa in maintaining its effective protonophore activity.


Assuntos
Mitocôndrias/efeitos dos fármacos , Pirazinas/química , Pirazinas/farmacologia , Desacopladores/química , Desacopladores/farmacologia , Trifosfato de Adenosina/metabolismo , Relação Dose-Resposta a Droga , Mitocôndrias/metabolismo , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Pirazinas/síntese química , Relação Estrutura-Atividade , Desacopladores/síntese química
15.
Acta Physiol (Oxf) ; 240(10): e14217, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39152636

RESUMO

BACKGROUND AND AIM: Metabolic dysfunction-associated steatohepatitis (MASH) is a metabolic disorder with limited treatment options. The thyroid hormone receptor (THR)-ß agonist resmetirom/MGL-3196 (MGL) increases liver fat oxidation and has been approved for treating adult MASH. However, over 60% of patients receiving MGL treatment do not achieve MASH resolution. Therefore, we investigated the potential for combination therapy of MGL with the mitochondrial uncoupler BAM15 to improve fatty liver disease outcomes in the GAN mouse model of MASH. METHODS: C57BL/6J male mice were fed GAN diet for 38 weeks before stratification and randomization to treatments including MGL, BAM15, MGL + BAM15, or no drug control for 8 weeks. Treatments were admixed in diet and mice were pair-fed to control for drug intake. Treatment effectiveness was assessed by body weight, body composition, energy expenditure, glucose tolerance, tissue lipid content, and histological analyses. RESULTS: MGL + BAM15 treatment resulted in better efficacy versus GAN control mice than either monotherapy in the context of energy expenditure, liver fat loss, glucose control, and fatty liver disease activity score. Improvements in ALT, liver mass, and plasma cholesterol were primarily driven by MGL, while improvements in body fat were primarily driven by BAM15. No treatments altered liver fibrosis. CONCLUSIONS: MGL + BAM15 treatment had overall better efficacy to improve metabolic outcomes in mice fed GAN diet than either monotherapy alone. These data warrant further investigation into combination therapies of THR-ß agonists and mitochondrial uncouplers for the potential treatment of disorders related to fatty liver, obesity, and insulin resistance.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Fígado/metabolismo , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Quimioterapia Combinada , Metabolismo dos Lipídeos/efeitos dos fármacos , Propionatos , Piridazinas , Uracila/análogos & derivados , Chalconas
16.
Biochim Biophys Acta Bioenerg ; 1865(4): 149506, 2024 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-39168228

RESUMO

Mitochondrial uncoupling by small-molecule protonophores is generally accepted to proceed via transmembrane proton shuttling. The idea of facilitating this process by the adenine nucleotide translocase ANT originated primarily from the partial reversal of the DNP-induced mitochondrial uncoupling by the ANT inhibitor carboxyatractyloside (CATR). Recently, the sensitivity to CATR was also observed for the action of such potent OxPhos uncouplers as BAM15, SF6847, FCCP and niclosamide. Here, we report measurements of the CATR effect on the activity of a large number of conventional and novel uncouplers in isolated mammalian mitochondria. Despite the broad variety of chemical structures, CATR attenuated the uncoupling efficacy of all the anionic protonophores in rat heart mitochondria with high abundance of ANT, whereas the effect was much less pronounced or even absent, e.g. for SF6847, in rat liver mitochondria with low ANT content. The fact that the uncoupling action is tissue specific for a broad spectrum of anionic protonophores is highlighted here for the first time. Only with the cationic uncoupler ellipticine and the channel-forming peptide gramicidin A, no sensitivity to CATR was found even in rat heart mitochondria. By contrast, with the recently described ester-stabilized ylidic protonophores [Kirsanov et al. Bioelectrochemistry 2023], the stimulating effect of CATR was discovered both in liver and heart mitochondria.


Assuntos
Atractilosídeo , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Ratos Wistar , Desacopladores , Animais , Ratos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Desacopladores/farmacologia , Atractilosídeo/análogos & derivados , Atractilosídeo/farmacologia , Atractilosídeo/metabolismo , Masculino , Translocases Mitocondriais de ADP e ATP/metabolismo , Ionóforos de Próton/farmacologia
17.
Toxicol Res ; 39(4): 611-623, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37779591

RESUMO

FCCP (carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone) is known to inhibit oxidative phosphorylation as a protonophore, dissipating the proton gradient across the inner mitochondrial membrane. To understand the toxicity of FCCP, 3-day, 2- and 4-week repeated oral dose studies were performed in male rats. In the 3-day and 2-week repeated dose toxicity studies, observations included salivation, increased body temperature, and dead and moribund animals. Increased liver weight was observed in conjunction with hydropic degeneration and centrilobular necrosis of hepatocytes. In addition, pathological changes were observed in the pancreas, testis, epididymal duct, stomach and parotid gland. Electron microscopic examination revealed mitochondrial pleomorphism in the hepatocytes. Swelling of mitochondria was observed in the alpha cells and beta cells of the pancreas. Dilatation of rough endoplasmic reticulum, Golgi bodies and loss of secretory granules were also noted in the beta cells of the pancreas. FCCP was also compared with three other mUncouplers (DNP, OPC-163493 and tolcapone) with regard to in vitro mitochondrial uncoupling (mUncoupling) activities. FCCP produced the peak ΔOCR (oxygen consumption rate) at the lowest concentration (0.4 µM), followed by OPC-163493, tolcapone, and DNP, based on peak values in ascending order of concentration (2.5, 10, and 50 µM, respectively). Considering the relationship between the mUncoupling activity and toxicity profile of the four mUncouplers, there is no parallel relationship between the in vitro mUncoupling activity and the degree of in vivo toxicity. These findings may contribute to the efficient development of new mitochondrial uncoupler candidates. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00189-x.

18.
Neurosci Lett ; 814: 137456, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37648059

RESUMO

OBJECTIVE: We evaluated the potential neuro-regenerative effects of the mitochondrial uncoupler 2,4-Dinitrophenol in experimental autoimmune neuritis, an animal model for an acute autoimmune neuropathy. METHODS: Experimental autoimmune neuritis was induced in Lewis rats. Different concentrations of 2,4-Dinitrophenol (1 mg/kg, 0.1 mg/kg and 0.01 mg/kg) were applied during the recovery phase of the neuritis (at days 18, 22 and 26) and compared to the vehicle. Any effects were assessed through functional, electrophysiological, and morphological analysis via electron microscopy of all groups at day 30. Additional immune-histochemical analysis of inflammation markers and remyelination of the sciatic nerves were performed for the dosage of 1 mg/kg and control. RESULTS: No enhancement of functional or electrophysiological recovery was observed in all 2,4-Dinitrophenol-treated groups. Cellular inflammation markers of T cells (CD3+) were comparable to control, and an increase of macrophages (IbA1+) invasion in the sciatic nerves was observed. Treatment with 2,4-Dinitrophenol reduced axonal swelling in myelinated and unmyelinated fibers with an increased production of brain-derived neurotrophic factor. CONCLUSION: Our findings do not support the hypothesis that repurposing of the mitochondrial uncoupler 2,4-Dinitrophenol exerts functionally relevant neuro-regenerative effects in autoimmune neuritis.


Assuntos
Neurite Autoimune Experimental , Neurite (Inflamação) , Ratos , Animais , Ratos Endogâmicos Lew , Neurite Autoimune Experimental/tratamento farmacológico , 2,4-Dinitrofenol/farmacologia , Dinitrofenóis , Inflamação
19.
Metabolites ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422268

RESUMO

BAM15 was recently screened as a protonophore uncoupler specifically for the mitochondrial membrane but not the plasma membrane. It is equally as potent as FCCP, but less toxic. Previously, mitochondrial uncoupling via DNP alleviates neurodegeneration in the nematode Caenorhabditis elegans during aging. Therefore, we investigated whether BAM15 uncouplers could phenotypically and functionally reduce neuronal defects in aged nematodes. We observed green fluorescence protein-tagged mechanosensory neurons and performed touch and chemotaxis assays during aging. Wild-type animals treated with both 50 µM BAM15 and 10 µM DNP showed reduced mechanosensory neuronal defects during aging, which correlates with the maintenance of touch responses and short-term memory during aging. Uncoupler mutant ucp-4 also responded the same way as the wild-type, reducing neurodegeneration in 50 µM BAM15 and 10 µM DNP-treated animals compared to the DMSO control. These results suggest that 50 µM BAM15 alleviates neurodegeneration phenotypically and functionally in C. elegans during aging, potentially through mitochondrial uncoupling. In accordance with the preserved neuronal shape and function in aged C. elegans, 50 µM BAM15 extended the mean lifespan of both wild-type and ucp-4 mutants.

20.
Bioelectrochemistry ; 145: 108081, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35131667

RESUMO

A great variety of coumarin-related compounds, both natural and synthetic, being often brightly fluorescent, have shown themselves beneficial in medicine for both therapeutic and imaging purposes. Here, in search for effective uncouplers of oxidative phosphorylation, we synthesized a series of 7-hydroxycoumarin (umbelliferone, UB) derivatives combining rather high membrane affinity with the presence of a hydroxyl group deprotonable at physiological pH - alkyl esters of umbelliferone-4-acetic acid (UB-4 esters) differing in alkyl chain length. Addition of UB-4 esters to isolated rat liver mitochondria (RLM) resulted in their rapid depolarization, unexpectedly followed by membrane potential recovery on a minute time scale. According to TLC and HPLC data, incubation of RLM with UB-4 esters caused their hydrolysis, which led to disappearance of the uncoupling activity (recoupling). Both mitochondrial recoupling and hydrolysis of UB-4 esters were suppressed by inhibitors of mitochondrial aldehyde dehydrogenase (ALDH2), disulfiram and daidzin, thus pointing to the involvement of this enzyme in the recoupling of RLM incubated with UB-4 esters. The protonophoric mechanism of mitochondrial uncoupling by UB-4 esters was proved in experiments with artificial bilayer lipid membranes (BLM): these compounds induced proton-selective electrical current across planar BLM and caused dissipation of pH gradient on liposomes. UB-4 esters showed antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Mycobacterium smegmatis.


Assuntos
Ésteres , Mitocôndrias Hepáticas , Ácido Acético/farmacologia , Aldeído-Desidrogenase Mitocondrial , Animais , Ésteres/farmacologia , Bicamadas Lipídicas/química , Ratos , Umbeliferonas/farmacologia , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA