Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br Poult Sci ; : 1-13, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994893

RESUMO

1. This study was conducted to investigate the effects of dietary supplementation of manganese (Mn) amino acid complexes on growth performance, Mn deposition, meat quality, breast muscle and bone development of broilers.2. A total of 504, one-day-old male Arbor Acres broilers were randomly divided into seven treatments; control diet (CON; basal diet, no extra Mn addition), manganese diet (MnN as Numine®-Mn; CON + 40, 80, 120 or 160 mg Mn/kg), manganese-S group (MnS; CON + 120 mg Mn/kg as MnSO4·H2O), manganese-A diet (MnA as Mn from hydrolysed feather meal; CON + 40 mg Mn/kg as MnA).3. There were no significant differences for average daily gain (ADG) or feed intake (ADFI) among diets during the feed phases (p > 0.05). The FCR in the starter and over the whole period were quadratically affected by dietary MnN dosage and gave the lowest FCR at 80 mg/kg (p < 0.05). The Mn content of thigh muscle, jejunum, heart, pancreas, liver and tibia increased linearly with MnN addition (p < 0.05).4. For meat quality, MnN significantly increased colour (a*), pH45 min and pH24 h, reduced shear force, drip loss and pressure loss of breast muscle (p < 0.05).5. Moreover, MnN significantly upregulated MYOD expression at d 21 and SOD expression at d 42, decreased MuRF1 and Atrogin-1 mRNA level at d 42 in breast muscle. Transcriptome analysis revealed that the regulating effect of MnN on muscle development significantly enriched signalling pathways such as adhesion, ECM-receptor, MAPK, mTOR and AMPK. Furthermore, dietary MnN significantly affected tibia length and growth plate development (p < 0.05) and promoted growth plate chondrocytes by increasing SOX-9, Runx-2, Mef2c, TGF-ß, Ihh, Bcl-2 and Beclin1 and decreasing Bax and Caspase-3 (p < 0.05) expression which affect longitudinal tibial development.6. In conclusion, Mn amino acid complexes could improve growth performance, tissue Mn deposition, breast muscle development, meat quality and bone development.

2.
Sci Total Environ ; 627: 534-543, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29426176

RESUMO

Numerous studies have associated air manganese (Mn) exposure with negative health effects, primarily neurotoxic disorders. This work presents a description of the emission and dispersion of PM10-bound Mn from industrial sources in the Santander bay area, Northern Spain. A detailed day-specific emission estimation was made and assessed for the main Mn source, a manganese alloy production plant under 8 different scenarios. Dispersion analysis of PM10-bound Mn was performed using the CALPUFF model. The model was validated from an observation dataset including 101 daily samples from four sites located in the vicinities of the manganese alloy plant. Model results were in reasonable agreement with observations (r = 0.37; NMSE = 2.08; Fractional Bias = 0.44 and Modelled/Observed ratio = 1.57). Simulated and observed Mn concentrations in the study area were much higher than the guidelines proposed by the World Health Organization (WHO) and the U.S. Environmental Protection Agency (USEPA), highlighting the need to reduce the Mn concentrations in the area. Based on the analysis of the Mn source contribution from the ferromanganese alloy plant, some preventive and corrective measures are discussed at the end of the paper. This work shows that CALPUFF dispersion model can be used to predict PM10-bound Mn concentrations with reasonable accuracy in the vicinities of industrial facilities allowing the exposure assessment of the nearby population, which can be used in future epidemiological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA