Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phytopathology ; 114(6): 1295-1304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148162

RESUMO

Despite its global importance as a primary source of table sugar and bioethanol, sugarcane faces a significant threat to its production due to diseases. One of these diseases, sugarcane smut, involves the emergence of a whip-like structure from the host apical shoot. The slow onset of this pathogenesis is the most substantial challenge for researchers to investigate the molecular events leading to resistance or susceptibility. In this study, we explored the early interaction between the smut fungus Sporisorium scitamineum and foliar tissues of the model plants Arabidopsis thaliana and Nicotiana benthamiana. Upon inoculation with the fungus, A. thaliana showed a compatible reaction, producing lesions during fungus colonization, whereas N. benthamiana showed signs of nonhost resistance. In addition, we propose a sugarcane detached leaf assay using plants cultivated in vitro to reveal sugarcane smut response outcomes. We used two sugarcane genotypes with known contrasting reactions to smut in the field. Although there is no evidence of sugarcane smut fungus infecting host leaves naturally, the sugarcane detached leaf assay enabled a rapid assessment of disease outcomes. Different symptoms in the detached leaves after inoculation distinguished smut-susceptible and smut-resistant sugarcane genotypes. Microscopic observations and gene expression analysis of S. scitamineum candidate effectors confirmed the fungal growth and its restriction on the compatible and incompatible interactions, respectively. These findings offer new prospects into the disease phenotyping of S. scitamineum, which could greatly expedite the comprehension of the initial stages of the pathogenesis and predict smut resistance in sugarcane genotypes.


Assuntos
Arabidopsis , Nicotiana , Doenças das Plantas , Folhas de Planta , Saccharum , Doenças das Plantas/microbiologia , Saccharum/microbiologia , Folhas de Planta/microbiologia , Nicotiana/microbiologia , Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Ustilaginales/fisiologia , Ustilaginales/patogenicidade , Ustilaginales/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Resistência à Doença/genética
2.
Molecules ; 29(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257354

RESUMO

The present work provides new evidence of the ongoing potential of surface-active ionic liquids (SAILs) and surface-active quaternary ammonium salts (surface-active QASs). To achieve this, a series of compounds were synthesized with a yield of ≥85%, and their thermal analyses were studied. Additionally, antimicrobial activity against both human pathogenic and soil microorganisms was investigated. Subsequently, their surface properties were explored with the aim of utilizing SAILs and surface-active QASs as alternatives to commercial amphiphilic compounds. Finally, we analyzed the wettability of the leaves' surface of plants occurring in agricultural fields at different temperatures (from 5 to 25 °C) and the model plant membrane of leaves. Our results show that the synthesized compounds exhibit higher activity than their commercial analogues such as, i.e., didecyldimethylammonium chloride (DDAC) and dodecyltrimethylammonium bromide (C12TAB), for which the CMC values are 2 mM and 15 mM. The effectiveness of the antimicrobial properties of synthesized compounds relies on their hydrophobic nature accompanied by a cut-off effect. Moreover, the best wettability of the leaves' surface was observed at 25 °C. Our research has yielded valuable insights into the potential effectiveness of SAILs and surface-active QASs as versatile compounds, offering a promising alternative to established antimicrobials and crop protection agents, all the while preserving substantial surface activity.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Humanos , Líquidos Iônicos/farmacologia , Sais , Anti-Infecciosos/farmacologia , Proteção de Cultivos , Folhas de Planta
3.
Physiol Mol Biol Plants ; 29(5): 695-707, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37363413

RESUMO

Color change in petals is a clever strategy to attract more pollinators and one of the attractive features of edible flowers for consumers. Several physiological, phytochemical, and ultrastructural factors are involved in this process. However, this phenomenon is well underexplored in white petals. In this study, we investigated the color changes of the white petals of the snapdragon (Antirrhinum majus 'Legend White') flower from different aspects during development and senescence. In the ultrastructural analysis, both epidermal and mesophyll cells were examined. During flower development, plastid transition and autophagy processes led to the fading of the green color of young petals and the reduction of starch content, chlorophyll, and carotenoids. The piecemeal chlorophagy was observed in the degradation of starch granules. Leucoplasts were converted into autophagosome-like structures and then disappeared. The presence of these structures was evidence of the transformation of the plastid to the vacuole. As the green color faded, phytochemical compounds were synthesized. With partial flower opening and progression of senescence, pH and phenolic compounds were responsible for color changes. The highest amount of phenolic compound was observed after the flower opening stages. However, Phenolic colored compounds or total anthocyanins became colorless under the influence of low pH. The decrease in starch content caused an increase in the lightness parameter, and the petal color changed to pale yellow.

4.
Molecules ; 26(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806877

RESUMO

Coumarins are phytochemicals occurring in the plant kingdom, which biosynthesis is induced under various stress factors. They belong to the wide class of specialized metabolites well known for their beneficial properties. Due to their high and wide biological activities, coumarins are important not only for the survival of plants in changing environmental conditions, but are of great importance in the pharmaceutical industry and are an active source for drug development. The identification of coumarins from natural sources has been reported for different plant species including a model plant Arabidopsis thaliana. In our previous work, we demonstrated a presence of naturally occurring intraspecies variation in the concentrations of scopoletin and its glycoside, scopolin, the major coumarins accumulating in Arabidopsis roots. Here, we expanded this work by examining a larger group of 28 Arabidopsis natural populations (called accessions) and by extracting and analysing coumarins from two different types of tissues-roots and leaves. In the current work, by quantifying the coumarin content in plant extracts with ultra-high-performance liquid chromatography coupled with a mass spectrometry analysis (UHPLC-MS), we detected a significant natural variation in the content of simple coumarins like scopoletin, umbelliferone and esculetin together with their glycosides: scopolin, skimmin and esculin, respectively. Increasing our knowledge of coumarin accumulation in Arabidopsis natural populations, might be beneficial for the future discovery of physiological mechanisms of action of various alleles involved in their biosynthesis. A better understanding of biosynthetic pathways of biologically active compounds is the prerequisite step in undertaking a metabolic engineering research.


Assuntos
Arabidopsis/metabolismo , Cumarínicos/análise , Espectrometria de Massas , Raízes de Plantas/metabolismo , Cromatografia Líquida de Alta Pressão , Cumarínicos/metabolismo
5.
Planta ; 252(6): 103, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185761

RESUMO

MAIN CONCLUSION: Nicotiana tabacum overexpressing CrSAMT from Citrus reticulata increased production of MeSA, which works as an airborne signal in neighboring wild-type plants, inducing PR1 and increasing resistance to the pathogen Xylella fastidiosa. Xylella fastidiosa is one of the major threats to plant health worldwide, affecting yield in many crops. Despite many efforts, the development of highly productive resistant varieties has been challenging. In studying host plant resistance, the S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase gene (SAMT) from Citrus reticulata, a X. fastidiosa resistant species, was upregulated in response to pathogen infection. SAMT is involved with the catalysis and production of methyl salicylate (MeSA), an airborne signal responsible for triggering systemic acquired resistance. Here we used tobacco as a model system and generated transgenic plants overexpressing C. reticulata SAMT (CrSAMT). We performed an in silico structural characterization of CrSAMT and investigated its biotechnological potential in modulating the immune system in transgenic plants. The increase of MeSA production in transgenic lines was confirmed by gas chromatography (GC-MS). The transgenic lines showed upregulation of PR1, and their incubation with neighboring wild-type plants activated PR1 expression, indicating that MeSA worked as an airborne signal. In addition, transgenic plants showed significantly fewer symptoms when challenged with X. fastidiosa. Altogether, these data suggest that CrSAMT plays a role in host defense response and can be used in biotechnology approaches to confer resistance against X. fastidiosa.


Assuntos
Citrus , Expressão Gênica , Metiltransferases , Salicilatos , Xylella , Citrus/genética , Citrus/microbiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Doenças das Plantas , Proteínas Recombinantes/genética , Salicilatos/química , Nicotiana/genética , Volatilização , Xylella/fisiologia
6.
Ann Bot ; 126(1): 1-23, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32271862

RESUMO

BACKGROUND: Model organisms are at the core of life science research. Notable examples include the mouse as a model for humans, baker's yeast for eukaryotic unicellular life and simple genetics, or the enterobacteria phage λ in virology. Plant research was an exception to this rule, with researchers relying on a variety of non-model plants until the eventual adoption of Arabidopsis thaliana as primary plant model in the 1980s. This proved to be an unprecedented success, and several secondary plant models have since been established. Currently, we are experiencing another wave of expansion in the set of plant models. SCOPE: Since the 2000s, new model plants have been established to study numerous aspects of plant biology, such as the evolution of land plants, grasses, invasive and parasitic plant life, adaptation to environmental challenges, and the development of morphological diversity. Concurrent with the establishment of new plant models, the advent of the 'omics' era in biology has led to a resurgence of the more complex non-model plants. With this review, we introduce some of the new and fascinating plant models, outline why they are interesting subjects to study, the questions they will help to answer, and the molecular tools that have been established and are available to researchers. CONCLUSIONS: Understanding the molecular mechanisms underlying all aspects of plant biology can only be achieved with the adoption of a comprehensive set of models, each of which allows the assessment of at least one aspect of plant life. The model plants described here represent a step forward towards our goal to explore and comprehend the diversity of plant form and function. Still, several questions remain unanswered, but the constant development of novel technologies in molecular biology and bioinformatics is already paving the way for the next generation of plant models.


Assuntos
Arabidopsis , Animais , Humanos , Camundongos
7.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033195

RESUMO

Brachypodium distachyon has become an excellent model for plant breeding and bioenergy grasses that permits many fundamental questions in grass biology to be addressed. One of the constraints to performing research in many grasses has been the difficulty with which they can be genetically transformed and the generally low frequency of such transformations. In this review, we discuss the contribution that transformation techniques have made in Brachypodium biology as well as how Brachypodium could be used to determine the factors that might contribute to transformation efficiency. In particular, we highlight the latest research on the mechanisms that govern the gradual loss of embryogenic potential in a tissue culture and propose using B. distachyon as a model for other recalcitrant monocots.


Assuntos
Brachypodium/genética , Técnicas de Cultura de Tecidos/métodos , Proteínas de Plantas/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Plantas Geneticamente Modificadas/genética , Transformação Genética/genética
8.
Plant J ; 96(6): 1093-1105, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30394623

RESUMO

Thlaspi arvense (pennycress) has the potential for domestication as a new oilseed crop. Information from an extensive body of research on the related plant species Arabidopsis can be used to greatly speed this process. Genome-scale comparisons in this paper documented that pennycress and Arabidopsis share similar gene duplication. This finding led to the hypothesis that it should be possible to isolate Arabidopsis-like mutants in pennycress. This proved to be true, as forward genetic screens identified floral and vegetative pennycress mutants that were similar to mutants found in Arabidopsis. Extending this approach, it was shown that most of the pennycress genes responsible for the formation of oxidized tannins could be rapidly identified. The causative mutations in the pennycress mutants could be identified either by PCR amplification of candidate genes or through whole-genome sequencing (WGS) analysis. In all, WGS was used to characterize 95 ethyl methane sulfonate mutants, which revealed a mutation rate of 4.09 mutations per megabase. A sufficient number of non-synonymous mutations were identified to create a mutant gene index that could be used for reverse genetic approaches to identify pennycress mutants of interest. As proof of concept, a Ta-max3-like dwarf mutant and Ta-kcs5/cer60-like wax mutants deficient in the biosynthesis of long chain fatty acids were identified. Overall, these studies demonstrate that translational genomics can be used to promote the domestication of pennycress. Furthermore, the ease with which important findings could be made in pennycress makes this species a new potential model plant.


Assuntos
Arabidopsis/genética , Genes de Plantas/genética , Modelos Genéticos , Genética Reversa , Thlaspi/genética , Genes de Plantas/fisiologia , Genoma de Planta/genética , Genômica , Mutação/genética , Genética Reversa/métodos
9.
BMC Plant Biol ; 19(1): 376, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455221

RESUMO

BACKGROUND: As a traditional Chinese herb, safflower (Carthamus tinctorius L.) is valued for its florets to prevent cardiovascular and cerebrovascular diseases. Basing on previous chemical analysis, the main active compounds are flavonoids in its florets. Although flavonoid biosynthetic pathway has been well-documented in many model species, unique biosynthetic pathway remains to be explored in safflower. Of note, as an important class of transitional enzymes, chalcone isomerase (CHI) has not been characterized in safflower. RESULTS: According to our previous research, CHIs were identified in a safflower transcriptome library built by our lab. To characterize CHI in safflower, a CHI gene named CtCHI1 was identified. A multiple sequences alignment and phylogenetic tree demonstrate that CtCHI1 shares 92% amino acid identity and close relationship with CHI to Saussurea medusa. Additionally, subcellular localization analysis indicated CtCHI1-GFP fusion protein was mainly in the cell nucleus. Further, we purified CtCHI1 protein from E. coli which can effectively catalyze isomerization of 2',4',4,6'-tetrahydroxychalcone into naringenin in vitro. Via genetic engineer technology, we successfully obtained transgenic tobacco and safflower lines. In transgenic tobacco, overexpression of CtCHI1 significantly inhibited main secondary metabolites accumulation, including quercetin (~ 79.63% for ovx-5 line) and anthocyanins (~ 64.55% for ovx-15 line). As shown in transgenic safflower, overexpression of CtCHI1 resulted in upstream genes CtPAL3 and CtC4H1 increasing dramatically (up to ~ 3.9fold) while Ct4CL3, CtF3H and CtDFR2 were inhibited. Also, comparing the whole metabolomics database by PCA and PLS-DA between transgenic and control group, 788 potential differential metabolites were marked and most of them displayed up-regulated trends. In parallel, some isolated secondary metabolites, such as hydroxysafflor yellow A (HSYA), rutin, kaempferol-3-O-ß-rutinoside and dihydrokaempferol, accumulated in transgenic safflower plants. CONCLUSIONS: In this study, we found that CtCHI1 is an active, functional, catalytic protein. Moreover, CtCHI1 can negatively and competitively regulate anthocyanins and quercetin pathway branches in tobacco. By contrast, CtCHI1 can positively regulate flavonol and chalcone metabolic flow in safflower. This research provides some clues to understand CHI's differential biochemical functional characterization involving in flavonoid pathway. More molecular mechanisms of CHI remain to be explored in the near future.


Assuntos
Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Liases Intramoleculares/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Vias Biossintéticas , Liases Intramoleculares/química , Liases Intramoleculares/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Metabolismo Secundário , Alinhamento de Sequência
10.
J Exp Bot ; 70(12): 3313-3328, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30949700

RESUMO

The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.


Assuntos
Brassicaceae/fisiologia , Expressão Gênica/efeitos da radiação , Genes de Plantas , Germinação/efeitos da radiação , Luz Solar , Ácido Abscísico/metabolismo , Brassicaceae/efeitos da radiação , Giberelinas/metabolismo , Transcriptoma/efeitos dos fármacos
11.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357582

RESUMO

Lotus (Nelumbo nucifera) is a perennial aquatic basal eudicot belonging to a small family Nelumbonaceace, which contains only one genus with two species. It is an important horticultural plant, with its uses ranging from ornamental, nutritional to medicinal values, and has been widely used, especially in Southeast Asia. Recently, the lotus obtained a lot of attention from the scientific community. An increasing number of research papers focusing on it have been published, which have shed light on the mysteries of this species. Here, we comprehensively reviewed the latest advancement of studies on the lotus, including phylogeny, genomics and the molecular mechanisms underlying its unique properties, its economic important traits, and so on. Meanwhile, current limitations in the research of the lotus were addressed, and the potential prospective were proposed as well. We believe that the lotus will be an important model plant in horticulture with the generation of germplasm suitable for laboratory operation and the establishment of a regeneration and transformation system.


Assuntos
Lotus/classificação , Lotus/fisiologia , Fenômenos Fisiológicos Vegetais , Pesquisa , Estudos de Associação Genética , Genoma de Planta , Genômica , Filogenia , Dinâmica Populacional , Característica Quantitativa Herdável
12.
BMC Genomics ; 19(1): 78, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361906

RESUMO

BACKGROUND: DNA methylation has a potential role in controlling gene expression and may, therefore, contribute to salinity adaptation in plants. Caliph medic (Medicago truncatula) is a model legume of moderate salinity tolerance capacity; however, a base-resolution DNA methylome map is not yet available for this plant. RESULTS: In this report, a differential whole-genome bisulfite sequencing (WGBS) was carried out using DNA samples extracted from root tissues exposed to either control or saline conditions. Around 50 million differentially methylated sites (DMSs) were recognized, 7% of which were significantly (p < 0.05, FDR < 0.05) altered in response to salinity. This analysis showed that 77.0% of the contexts of DMSs were mCHH, while only 9.1% and 13.9% were mCHG and mCG, respectively. The average change in methylation level was increased in all sequence contexts, ranging from 3.8 to 10.2% due to salinity stress. However, collectively, the level of the DNA methylation in the gene body slightly decreased in response to salinity treatment. The global increase in DNA methylation due to salinity was confirmed by mass spectrometry analysis. Gene expression analysis using qPCR did not reveal a constant relationship between the level of mCG methylation and the transcription abundance of some genes of potential importance in salinity tolerance, such as the potassium channel KAT3, the vacuolar H+-pyrophosphatase (V-PPase), and the AP2/ERF and bZIP transcription factors, implying the involvement of other epigenetic gene expression controllers. Computational functional prediction of the annotated genes that embrace DMSs revealed the presence of enzymes with potential cellular functions in biological processes associated with salinity tolerance mechanisms. CONCLUSIONS: The information obtained from this study illustrates the effect of salinity on DNA methylation and shows how plants can remodel the landscape of 5-methylcytosine nucleotide (5-mC) in the DNA across gene structures, in response to salinity. This remodeling varies between gene regions and between 5-mC sequence contexts. The mCG has a vague impact on the expression levels of a few selected potentially important genes in salt tolerant mechanisms.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Medicago truncatula/genética , Modelos Biológicos , Salinidade , Epigenômica , Medicago truncatula/crescimento & desenvolvimento , Anotação de Sequência Molecular/métodos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de DNA , Estresse Fisiológico
13.
Plant Cell Rep ; 36(8): 1225-1236, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28466187

RESUMO

KEY MESSAGE: The semi-aquatic plant Water-Wisteria is suggested as a new model to study heterophylly due to its many advantages and typical leaf phenotypic plasticity in response to environmental factors and phytohormones. Water-Wisteria, Hygrophila difformis (Acanthaceae), is a fast growing semi-aquatic plant that exhibits a variety of leaf shapes, from simple leaves to highly branched compound leaves, depending on the environment. The phenomenon by which leaves change their morphology in response to environmental conditions is called heterophylly. In order to investigate the characteristics of heterophylly, we assessed the morphology and anatomy of Hygrophila difformis in different conditions. Subsequently, we verified that phytohormones and environmental factors can induce heterophylly and found that Hygrophila difformis is easily propagated vegetatively through either leaf cuttings or callus induction, and the callus can be easily transformed by Agrobacterium tumefaciens. These results suggested that Hygrophila difformis is a good model plant to study heterophylly in higher aquatic plants.


Assuntos
Folhas de Planta/metabolismo , Wisteria/metabolismo , Agrobacterium tumefaciens/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/fisiologia , Wisteria/fisiologia
14.
Virus Genes ; 52(2): 299-302, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26814813

RESUMO

Barley yellow dwarf viruses (BYDVs) belong to the family Luteoviridae and cause disease in cereals. Because of the large and complex genome of cereal plants, it is difficult to study host-virus interactions. In order to establish a model host system for the studies on BYDVs, we examined the susceptibility of a monocot model plant, Brachypodium distachyon, to BYDV-GAV infection. Fourteen days after BYDV-GAV inoculation by aphid transmission, B. distachyon plants (inbred line Bd21-3) showed conspicuous disease symptoms such as leaf reddening, dwarfness and root stunting. Virus accumulation was detected in both shoots and roots using reverse transcription PCR and triple antibody sandwich ELISA. Compared with infected wheat plants, B. distachyon plants developed more severe disease symptoms and accumulated a higher level of BYDV-GAV. Under transmission electron microscope, we observed that virus particles accumulated in companion cells and BYDV-GAV infection was associated with the deformation of chloroplasts in the infected leaves of B. distachyon plants. Our results suggest that B. distachyon is a suitable and promising experimental model plant for the host-BYDV-GAV pathosystem and possibly for other BYDVs.


Assuntos
Brachypodium/virologia , Interações Hospedeiro-Patógeno , Luteovirus/fisiologia , Tropismo Viral , Doenças das Plantas/virologia , Triticum/virologia
16.
J Hazard Mater ; 468: 133701, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364576

RESUMO

Rare earth elements (REEs) are crucial elements for current high-technology and renewable energy advances. In addition to their increasing usage and their low recyclability leading to their release into the environment, REEs are also used as crop fertilizers. However, little is known regarding the cellular and molecular effects of REEs in plants, which is crucial for better risk assessment, crop safety and phytoremediation. Here, we analysed the ionome and transcriptomic response of Arabidopsis thaliana exposed to a light (lanthanum, La) and a heavy (ytterbium, Yb) REE. At the transcriptome level, we observed the contribution of ROS and auxin redistribution to the modified root architecture following REE exposure. We found indications for the perturbation of Fe homeostasis by REEs in both roots and leaves of Arabidopsis suggesting competition between REEs and Fe. Furthermore, we propose putative ways of entry of REEs inside cells through transporters of microelements. Finally, similar to REE accumulating species, organic acid homeostasis (e.g. malate and citrate) appears critical as a tolerance mechanism in response to REEs. By combining ionomics and transcriptomics, we elucidated essential patterns of REE uptake and toxicity response of Arabidopsis and provide new hypotheses for a better evaluation of the impact of REEs on plant homeostasis.


Assuntos
Arabidopsis , Metais Terras Raras , Arabidopsis/genética , Metais Terras Raras/toxicidade , Lantânio , Plantas , Homeostase
17.
Front Plant Sci ; 14: 1268085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093994

RESUMO

Compared with other crops, pennycress (Thlaspi arvense L.) is a niche emerging oil crop. In recent years, research on pennycress has been increasingly reflected in various directions. Pennycress belongs to the Brassicaceae family and was introduced from Eurasia to North America. It has been found worldwide as a cultivated plant and weed. In this paper, we review the advantages of pennycress as a supplementary model plant of Arabidopsis thaliana, oil and protein extraction technology, seed composition analysis based on metabolomics, germplasm resource development, growth, and ecological impact research, abiotic stress, fatty acid extraction optimization strategy, and other aspects of studies over recent years. The main research directions proposed for the future are as follows: (1) assemble the genome of pennycress to complete its entire genome data, (2) optimize the extraction process of pennycress as biodiesel, (3) analyze the molecular mechanism of the fatty acid synthesis pathway in pennycress, and (4) the functions of key genes corresponding to various adversity conditions of pennycress.

18.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299639

RESUMO

In the context of the widespread distribution of zero valent iron nanoparticles (nZVI) in the environment and its possible exposure to many aquatic and terrestrial organisms, this study investigates the effects, uptake, bioaccumulation, localisation and possible transformations of nZVI in two different forms (aqueous dispersion-Nanofer 25S and air-stable powder-Nanofer STAR) in a model plant-Arabidopsis thaliana. Seedlings exposed to Nanofer STAR displayed symptoms of toxicity, including chlorosis and reduced growth. At the tissue and cellular level, the exposure to Nanofer STAR induced a strong accumulation of Fe in the root intercellular spaces and in Fe-rich granules in pollen grains. Nanofer STAR did not undergo any transformations during 7 days of incubation, while in Nanofer 25S, three different behaviours were observed: (i) stability, (ii) partial dissolution and (iii) the agglomeration process. The size distributions obtained by SP-ICP-MS/MS demonstrated that regardless of the type of nZVI used, iron was taken up and accumulated in the plant, mainly in the form of intact nanoparticles. The agglomerates created in the growth medium in the case of Nanofer 25S were not taken up by the plant. Taken together, the results indicate that Arabidopsis plants do take up, transport and accumulate nZVI in all parts of the plants, including the seeds, which will provide a better understanding of the behaviour and transformations of nZVI once released into the environment, a critical issue from the point of view of food safety.

19.
Front Plant Sci ; 13: 908426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909791

RESUMO

Autotoxicity is a form of intraspecific allelopathy, in which a plant species inhibits the establishment or growth of the same species through the release of toxic chemical compounds into the environment. The phenomenon of autotoxicity in crops is best traced in alfalfa (Medicago sativa). A close relative of alfalfa, M. truncatula, has been developed into an excellent model species for leguminous plants. However, it is not known whether M. truncatula has autotoxicity. In this study, M. truncatula root exudates showed a negative impact on the growth of M. truncatula seedlings, indicating autotoxicity. Detailed analyses with plant extracts from M. truncatula and alfalfa revealed varying degrees of suppression effects in the two species. The extracts negatively affected seed germination potential, germination rate, radicle length, hypocotyl length, synthetic allelopathic effect index, plant height, root growth, fresh weight, dry weight, net photosynthetic rate, transpiration rate, and stomatal conductance in both M. truncatula and alfalfa. The results demonstrated that autotoxicity and allelopathic effects exist in M. truncatula. This opens up a new way to use M. truncatula as a model species to carry out in-depth studies of autotoxicity and allelopathy to elucidate biochemical pathways of allelochemicals and molecular networks controlling biosynthesis of the chemicals.

20.
BioTechnologia (Pozn) ; 103(4): 355-384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685700

RESUMO

Peganum harmala is a valuable wild plant that grows and survives under adverse conditions and produces pharmaceutical alkaloid metabolites. Using different assemblers to develop a transcriptome improves the quality of assembled transcriptome. In this study, a concrete and accurate method for detecting stress-responsive transcripts by comparing stress-related gene ontology (GO) terms and public domains was designed. An integrated transcriptome for P. harmala including 42 656 coding sequences was created by merging de novo assembled transcriptomes. Around 35 000 transcripts were annotated with more than 90% resemblance to three closely related species of Citrus, which confirmed the robustness of the assembled transcriptome; 4853 stress-responsive transcripts were identified. CYP82 involved in alkaloid biosynthesis showed a higher number of transcripts in P. harmala than in other plants, indicating its diverse alkaloid biosynthesis attributes. Transcription factors (TFs) and regulatory elements with 3887 transcripts comprised 9% of the transcriptome. Among the TFs of the integrated transcriptome, cystein2/histidine2 (C2H2) and WD40 repeat families were the most abundant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) MAPK (mitogen-activated protein kinase) signaling map and the plant hormone signal transduction map showed the highest assigned genes to these pathways, suggesting their potential stress resistance. The P. harmala whole-transcriptome survey provides important resources and paves the way for functional and comparative genomic studies on this plant to discover stress-tolerance-related markers and response mechanisms in stress physiology, phytochemistry, ecology, biodiversity, and evolution. P. harmala can be a potential model for studying adverse environmental cues and metabolite biosynthesis and a major source for the production of various alkaloids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA