RESUMO
Antimicrobial resistance is a growing concern of global public health. The emergence of colistin-resistance among carbapenem-resistant (CPR) Gram-negative bacteria causing fear of pan-resistance, treatment failure, and high mortality across the globe. AIM: To determine the genotypic colistin-resistance mechanisms among colistin-resistant (CR)Gram-negative clinical isolates along with genomic insight into hypermucoviscous(hv)-CR-Klebsiella pneumoniae. METHODS: Phenotypic colistin-resistance via broth-microdilution method. PCR-based detection of plasmid-mediated colistin resistance genes(mcr-1,2,3). Characterization of selected hvCR-K. pneumoniae via Whole-genome sequencing. RESULTS: Phenotypic colistin-resistance was 28% among CPR-Gram-negative isolates of which 90% of CR-isolates displayed MDR profile with overall low plasmid-mediated colistin resistance (mcr-2 = 9.4%;mcr-3 = 6%). Although K. pneumoniae isolates showed the highest phenotypic colistin-resistance (51%) however, relatively low plasmid-mediated gene-carriage (mcr-2 = 11.5%;mcr-3 = 3.4%) pointed toward other mechanisms of colistin-resistance. mcr-negative CR-K. pneumoniae displaying hv-phenotype were subjected to WGS. In-silico analysis detected 7-novel mutations in lipid-A modification genes includes eptA(I38V; V50L; A135P), opgE(M53L; T486A; G236S), and arnD(S164P) in addition to several non-synonymous mutations in lipid-A modification genes conferring resistance to colistin. Insertion of 6.6-kb region harboring putative-PEA-encoding gene(yjgX) was detected for the first time in K. pneumoniae (hvCRKP4771). In-silico analysis further confirmed the acquisition of not only MDR determinants but several hypervirulent-determinants displaying a convergent phenotype. CONCLUSION: overall high prevalence of phenotypic colistin resistance but low mcr-gene carriage suggested complex chromosomal mediated resistance mechanism especially in K. pneumoniae isolates. The presence of novel mutations in lipid-A modification genes and the acquisition of putative-PEA-encoding gene by hvCR-K. pneumoniae points toward the role of chromosomal determinants conferring resistance to colistin in the absence of mcr-genes.
Assuntos
Colistina , Farmacorresistência Bacteriana , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Centros de Atenção TerciáriaRESUMO
Transient receptor potential melastatin 7 (TRPM7) channels represent a major magnesium (Mg2+)-uptake component in mammalian cells and are negatively modulated by internal Mg2+. However, few TRPM7 modulators were identified so far, which hindered the understanding of the TRPM7 channel functions. In this study, we identified that CCT128930, an ATP-competitive protein kinase B inhibitor reported previously, was a potent TRPM7 channel antagonist. The inhibition of CCT128930 on TRPM7 was independent of intracellular Mg2+. In the absence and presence of 300 µM Mg2+ in pipette solution, the IC50 values were 0.86 ± 0.11 µM and 0.63 ± 0.09 µM, respectively. Subtype selectivity data showed that CCT128930 preferentially inhibited TRPM7 channels compared to TRPM6 and TRPM8 isoforms. In addition, CCT128930 was found to be able to reduce the endogenous TRPM7-like currents in SH-SY5Y neuroblastoma cells. At last, multiple residues in the superficial part of the TRPM7 selectivity filter were identified to be critical for the inhibitory activity of CCT128930 which are different from the determinants of Mg2+ and reported TRPM7 antagonists. Our results indicated that CCT128930 is a novel and potent TRPM7 channel antagonist.
Assuntos
Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Pirimidinas/química , Pirróis/químicaRESUMO
PURPOSE: There is a need for biomarkers of drug efficacy for targeted therapies in triple-negative breast cancer (TNBC). As a step toward this, we identify multi-omic molecular determinants of anti-TNBC efficacy in cell lines for a panel of oncology drugs. METHODS: Using 23 TNBC cell lines, drug sensitivity scores (DSS3) were determined using a panel of investigational drugs and drugs approved for other indications. Molecular readouts were generated for each cell line using RNA sequencing, RNA targeted panels, DNA sequencing, and functional proteomics. DSS3 values were correlated with molecular readouts using a FDR-corrected significance cutoff of p* < 0.05 and yielded molecular determinant panels that predict anti-TNBC efficacy. RESULTS: Six molecular determinant panels were obtained from 12 drugs we prioritized based on their efficacy. Determinant panels were largely devoid of DNA mutations of the targeted pathway. Molecular determinants were obtained by correlating DSS3 with molecular readouts. We found that co-inhibiting molecular correlate pathways leads to robust synergy across many cell lines. CONCLUSIONS: These findings demonstrate an integrated method to identify biomarkers of drug efficacy in TNBC where DNA predictions correlate poorly with drug response. Our work outlines a framework for the identification of novel molecular determinants and optimal companion drugs for combination therapy based on these correlates.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/etiologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Perfilação da Expressão Gênica , Humanos , Mutação , Proteômica , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
West Nile virus (WNV), like the dengue virus (DENV) and yellow fever virus (YFV), are major arboviruses belonging to the Flavivirus genus. WNV is emerging or endemic in many countries around the world, affecting humans and other vertebrates. Since 1999, it has been considered to be a major public and veterinary health problem, causing diverse pathologies, ranging from a mild febrile state to severe neurological damage and death. WNV is transmitted in a bird-mosquito-bird cycle, and can occasionally infect humans and horses, both highly susceptible to the virus but considered dead-end hosts. Many studies have investigated the molecular determinants of WNV virulence, mainly with the ultimate objective of guiding vaccine development. Several vaccines are used in horses in different parts of the world, but there are no licensed WNV vaccines for humans, suggesting the need for greater understanding of the molecular determinants of virulence and antigenicity in different hosts. Owing to technical and economic considerations, WNV virulence factors have essentially been studied in rodent models, and the results cannot always be transported to mosquito vectors or to avian hosts. In this review, the known molecular determinants of WNV virulence, according to invertebrate (mosquitoes) or vertebrate hosts (mammalian and avian), are presented and discussed. This overview will highlight the differences and similarities found between WNV hosts and models, to provide a foundation for the prediction and anticipation of WNV re-emergence and its risk of global spread.
Assuntos
Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Animais , Culicidae/virologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Invertebrados , Mosquitos Vetores/virologia , Especificidade da Espécie , Vertebrados , Virulência , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/patogenicidadeRESUMO
Group IIA secretory phospholipase A2 (sPLA(2)-IIA) of mammalian species is unique among the many structurally and functionally related mammalian sPLA(2) in their high net positive charge and potent (nM) antibacterial activity. Toward the Gram-positive bacteria tested thus far, the global cationic properties of sPLA(2)-IIA are necessary for optimal binding to intact bacteria and penetration of the multi-layered thick cell wall, but not for the degradation of membrane phospholipids that is essential for bacterial killing. Various Gram-positive bacterial species can differ as much as 1000-fold in sPLA(2)-IIA sensitivity despite similar intrinsic enzymatic activity of sPLA(2)-IIA toward the membrane phospholipids of various bacteria. d-alanylation of wall- and lipo-teichoic acids in Staphylococcus aureus and sortase function in Streptococcus pyogenes increase bacterial resistance to sPLA(2)-IIA by up to 100-fold apparently by affecting translocation of bound sPLA(2)-IIA to the cell membrane. Action of the sPLA(2)-IIA and other related sPLA(2) against Gram-negative bacteria is more dependent on cationic properties of the enzyme near the amino-terminus of the protein and collaboration with other host defense proteins that produce alterations of the unique Gram-negative bacterial outer membrane that normally represents a barrier to sPLA(2)-IIA action. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Assuntos
Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/enzimologia , Fosfolipases A2 do Grupo II/metabolismo , Fosfolipídeos/metabolismo , Animais , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/patogenicidade , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/prevenção & controle , Fosfolipases A2 do Grupo II/uso terapêutico , Interações Hospedeiro-Patógeno , Humanos , Lipólise , Viabilidade Microbiana , Transdução de Sinais , Especificidade por SubstratoRESUMO
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Assuntos
Quirópteros , Doenças Transmissíveis Emergentes , Animais , Quirópteros/virologia , Humanos , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Viroses/transmissão , Viroses/virologia , Imunidade Inata , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Vírus/genética , Replicação Viral , Vírus Nipah/genética , Vírus Nipah/fisiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologiaRESUMO
Candida albicans is known for its pathogenicity, although it lives within the human body as a commensal member. The commensal nature of C. albicans is well controlled and regulated by the host's immune system as they live in the harmonized microenvironment. However, the development of certain unusual microhabitat conditions (change in pH, co-inhabiting microorganisms' population ratio, debilitated host-immune system) pokes this commensal fungus to transform into a pathogen in such a way that it starts to propagate very rapidly and tries to breach the epithelial barrier to enter the host's systemic circulations. In addition, Candida is infamous as a major nosocomial (hospital-acquired infection) agent because it enters the human body through venous catheters or medical prostheses. The hysterical mode of C. albicans growth builds its microcolony or biofilm, which is pathogenic for the host. Biofilms propose additional resistance mechanisms from host immunity or extracellular chemicals to aid their survival. Differential gene expressions and regulations within the biofilms cause altered morphology and metabolism. The genes associated with adhesiveness, hyphal/pseudo-hyphal growth, persister cell transformation, and biofilm formation by C. albicans are controlled by myriads of cell-signaling regulators. These genes' transcription is controlled by different molecular determinants like transcription factors and regulators. Therefore, this review has focused discussion on host-immune-sensing molecular determinants of Candida during biofilm formation, regulatory descriptors (secondary messengers, regulatory RNAs, transcription factors) of Candida involved in biofilm formation that could enable small-molecule drug discovery against these molecular determinants, and lead to disrupt the well-structured Candida biofilms effectively.
RESUMO
The emergence of drug-resistant tuberculosis forced the development of new drugs and the screening of more effective or less toxic analogues. Mycolic acid biosynthesis is targeted by several antituberculosis drugs, isoniazid being one of the most important in tuberculosis therapy. Recently, perchlozone, acting on another step in the FAS-II cycle, was officially approved for tuberculosis treatment in the Russian Federation and was included in the Russian national clinical guidelines. Using the serial dilution method on 7H10 agar plates for perchlozone and a Sensititre MYCOTB microdilution plate, we analyzed the phenotypic properties of primary clinical isolates of M. tuberculosis and analyzed the molecular determinants of resistance to isoniazid, ethionamide, and perchlozone. We found a wide variation in the MIC of perchlozone from 2 to 64 mg/L, correlating with the overall resistance profile: the MIC was higher for MDR and pre-XDR isolates. The cross-resistance between ethionamide and perchlozone was driven by mutations in the ethA gene encoding monooxygenase responsible for the activation of both drugs. The presumably susceptible to perchlozone and wild-type strains had MICs ranging from 2 to 4 mg/L, and the breakpoint was estimated to be 4 or 8 mg/L. In conclusion, susceptibility to perchlozone is retained for a part of the MDR strains, as is susceptibility to ethionamide, providing the possibility of therapy for such cases based on phenotypic or molecular analysis.
RESUMO
West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.
Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Cavalos , Camundongos , Febre do Nilo Ocidental/epidemiologia , Regiões 3' não Traduzidas , Virulência , Galinhas , Mosquitos Vetores , MamíferosRESUMO
Sweet taste is a primary sensation for the preference and adaption of primates to diet, which is crucial for their survival and fitness. It is clear now that the sweet perception is mediated by a G protein-coupled receptor (GPCR)-sweet taste receptor T1R2/T1R3, and many behavioral or physiological experiments have described the diverse sweet taste sensitivities in primates. However, the structure-function relationship of T1R2s/T1R3s in primates, especially the molecular basis for their species-dependent sweet taste, has not been well understood until now. In this study, we performed a comprehensive sequence, structural and functional analysis of sweet taste receptors in primates to elucidate the molecular determinants mediating their species-dependent sweet taste recognition. Our results reveal distinct taxonomic distribution and significant characteristics (interaction, coevolution and epistasis) of specific key function-related residues, which could partly account for the previously reported behavioral results of taste perception in primates. Moreover, the prosimians Lemuriformes species, which were reported to have no sensitivity to aspartame, could be proposed to be aspartame tasters based on the present analysis. Collectively, our study provides new insights and promotes a better understanding for the diversity, function and evolution of sweet taste receptors in primates.
RESUMO
BACKGROUND: There is a paucity of data concerning molecular heterogeneity among glottic squamous cell carcinoma, and the clinical implications thereof. METHODS: Data corresponding to glottic squamous cell carcinoma were derived from The Cancer Genome Atlas. The Onco-GPS computational methodology was levied to derive four patterns of transcriptional activity and three functional subtypes of glottic cancer. RESULTS: Thirty glottic cancer samples stratified to three distinct oncogenic states (S0-S2) based on a Onco-GPS model containing four transcriptional components (F0-F3). Membership in S2 and association with transcriptional component F0 conveyed an invasive phenotype, with transcriptional activity strongly reflecting EMT programming (including TGF-B and NF-KB signaling). S2 membership also correlated with inferior disease-specific survival (HR 9.027, 95% CI 1.021-79.767), and higher incidences of extracapsular spread and perineural invasion. CONCLUSIONS: We present a functional taxonomy of glottic cancer, with subtypes demonstrating differential upregulation of canonical oncogenic networks and survival implications.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Neoplasias da Língua , Humanos , Neoplasias Laríngeas/patologia , Carcinoma de Células Escamosas/patologia , Estadiamento de Neoplasias , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Língua/patologia , Glote/patologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologiaRESUMO
Sulfadoxine-pyrimethamine (SP) resistance impairs the efficacy of antimalarial drugs. Monitoring molecular markers in exported malaria infections provides an efficient way to trace the emergence of drug resistance in countries where malaria is endemic. Molecular markers in Pfdhfr and Pfdhps of 237 Plasmodium falciparum infections imported from central Africa between 2016 and 2021 were detected. The spatial and temporal distributions of Pfdhfr and Pfdhps mutations were analyzed. A high prevalence of Pfdhfr single-nucleotide polymorphisms (SNPs) (~92.34% to 99.10%) and a high frequency of the triple mutation haplotype I51R59N108 were observed. Cameroon, Equatorial Guinea, and Gabon showed a higher frequency (~96.61% to 100.00%) of I51R59N108 than other countries (~71.11% to 88.10%). The prevalence of C59R and I51R59N108 increased while that of other SNPs or haplotypes did not fluctuate greatly from 2016 to 2021. Large proportions of Pfdhps SNPs (A437G and K540E) were demonstrated. The SNP distribution of Pfdhps differed between countries, with S436A dominating in northern countries and A437G dominating in others. The proportions of I431V, A437G, and the triple mutant haplotype declined between 2016 and 2021, whereas the prevalence of the single mutant haplotype rose from 61.60% to 73.68%. Combinations of Pfdhfr-Pfdhps alleles conferring partial resistance, full resistance, and superresistance to SP, as defined in the text, were detected in 63.64%, 8.64%, and 0.91% of the samples, respectively. The octuple Pfdhfr-Pfdhps allele (I51R59N108-V431A436G437K540G581S613) was seen in 5.00% of the samples. We demonstrated the wide geographic spread and increasing trends in highly SP-resistant Pfdhfr genes and varying spatial patterns of Pfdhps mutants across countries in central Africa. The high prevalences of partially resistant, fully resistant, and superresistant Pfdhfr-Pfdhps combinations observed here indicated impaired SP efficacy. Increased molecular surveillance is required to monitor the changing status of the Pfdhfr and Pfdhps genes. IMPORTANCE Monitoring drug resistance is important for malaria control because its early detection enables timely action to prevent its spread and mitigate its impact. The wide geographic spread and the increasing trend of highly resistant Pfdhfr genes between 2016 and 2021 found in our study are worrisome and emphasize the urgency to monitor their updated status in central Africa. This study also illustrated the wide spread of the novel mutant Pfdhps I431V as well as the high prevalence of "partially resistant," "fully resistant," and "superresistant" Pfdhfr-Pfdhps combinations, indicating the urgent concern for SP efficacy in central Africa. These findings are alarming in central African countries where malaria is endemic, where SP was is widely used for the intermittent preventive treatment of malaria in pregnancy (IPTp) and the intermittent preventive treatment of malaria in infants below 5 years of age (IPTi), and urge enhanced molecular surveillance and responses to the threat of drug resistance.
Assuntos
Antimaláricos , Malária Falciparum , Plasmodium falciparum , Humanos , África Central/epidemiologia , Alelos , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/epidemiologia , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genéticaRESUMO
JZTX-V is a toxin isolated from the venom of the Chinese spider Chilobrachys jingzhao. Previous studies had shown that JZTX-V could inhibit the transient outward potassium current of Kv4.2 and Kv4.3 expressed in Xenopus oocytes but had no effects on Kv1.2-1.4. However, the underlying action mechanism of JZTX-V on Kv4.3 remains unclear. In our study, JZTX-V could inhibit not only transient outward potassium currents evoked in small-sized DRG neurons but also Kv4.3-encoded currents expressed in HEK293T cells in the concentration and voltage dependence. The half maximal inhibitory concentration of JZTX-V on Kv4.3 was 9.6 ± 1.2 nM. In addition, the time course for JZTX-V inhibition and release of inhibition after washout were 15.8 ± 1.54 s and 58.8 ± 4.35 s. Electrophysiological assays indicated that 25 nM JZTX-V could shift significantly the voltage dependence of steady-state activation and steady-state inactivation to depolarization. Meanwhile, 25 nM JZTX-V decreased markedly the time constant of activation and inactivation but had no effect on the time constant of recovery from inactivation. To study the molecular determinants of Kv4.3, we performed alanine scanning on a conserved motif of Kv4.3 and assayed the affinity between mutants and JZTX-V. The results not only showed that I273, L275, V283, and F287 were molecular determinants in the conserved motif of Kv4.3 for interacting with JZTX-V but also speculated the underlying action mechanism that the hydrophobic interaction and steric effects played key roles in the binding of JZTX-V with Kv4.3. In summary, our studies have laid a scientific theoretical foundation for further research on the interaction mechanism between JZTX-V and Kv4.3.
Assuntos
Venenos de Aranha , Aranhas , Animais , Células HEK293 , Humanos , Neurônios , Peptídeos/farmacologia , Venenos de Aranha/farmacologiaRESUMO
In the neocortex, functionally distinct areas process specific types of information. Area identity is established by morphogens and transcriptional master regulators, but downstream mechanisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-binding proteins in defining area-specific cytoarchitecture. Mice lacking Pum2 or overexpressing human TDP-43 show apparent 'motorization' of layers IV and V of primary somatosensory cortex (S1), characterized by dramatic expansion of cells co-expressing Sox5 and Bcl11b/Ctip2, a hallmark of subcerebral projection neurons, at the expense of cells expressing the layer IV neuronal marker Rorß. Moreover, retrograde labeling experiments with cholera toxin B in Pum2; Emx1-Cre and TDP43A315T mice revealed a corresponding increase in subcerebral connectivity of these neurons in S1. Intriguingly, other key features of somatosensory area identity are largely preserved, suggesting that Pum2 and TDP-43 may function in a downstream program, rather than controlling area identity per se. Transfection of primary neurons and in utero electroporation (IUE) suggest cell-autonomous and post-mitotic modulation of Sox5, Bcl11b/Ctip2, and Rorß levels. Mechanistically, we find that Pum2 and TDP-43 directly interact with and affect the translation of mRNAs encoding Sox5, Bcl11b/Ctip2, and Rorß. In contrast, effects on the levels of these mRNAs were not detectable in qRT-PCR or single-molecule fluorescent in situ hybridization assays, and we also did not detect effects on their splicing or polyadenylation patterns. Our results support the notion that post-transcriptional regulatory programs involving translational regulation and mediated by Pum2 and TDP-43 contribute to elaboration of area-specific neuronal identity and connectivity in the neocortex.
Assuntos
Neocórtex , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Neocórtex/metabolismo , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismoRESUMO
Uncontrollable metastatic outgrowth process is the leading cause of mortality worldwide, even in the case of colorectal cancer. Colorectal cancer (CRC) accounts for approximately 10% of all annually diagnosed cancers and 50% of CRC patients will develop metastases in the course of disease. Most patients with metastatic CRC have incurable disease. Even if patients undergo resection of liver metastases, the 5year survival rate ranges from 25 to 58%. Nextgeneration sequencing of tumour specimens from large colorectal cancer patient cohorts has led to major advances in elucidating the genomic landscape of these tumours and paired metastases. The expression profiles of primary CRC and their metastatic lesions at both the gene and pathway levels were compared and led to the selection of early driver genes responsible for carcinogenesis and metastasisspecific genes that increased the metastatic process. The genetic, transcriptional and epigenetic alteration encoded by these genes and their combination influence many pivotal signalling pathways, enabling the dissemination and outgrowth in distant organs. Therapeutic regimens affecting several different active pathways may have important implications for therapeutic efficacy.
Assuntos
Neoplasias Colorretais/genética , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metástase Neoplásica , TranscriptomaRESUMO
Viruses in genus Fijivirus (family Reoviridae) have caused serious damage to rice, maize and sugarcane in American, Asian, European and Oceanian countries, where seven plant-infecting and two insect-specific viruses have been reported. Because the planthopper vectors are the only means of virus spread in nature, their migration and efficient transmission of these viruses among different crops or gramineous weeds in a persistent propagative manner are obligatory for virus epidemics. Understanding the mechanisms of virus transmission by these insect vectors is thus key for managing the spread of virus. This review describes current understandings of main fijiviruses and their insect vectors, transmission characteristics, effects of viruses on the behavior and physiology of vector insects, molecular transmission mechanisms. The relationships among transmission, virus epidemics and management are also discussed. To better understand fijivirus-plant disease system, research needs to focus on the complex interactions among the virus, insect vector, insect microbes, and plants.
RESUMO
Obstructive sleep apnea (OSA) is characterized as recurrent episodes of obstruction in the upper airway during the period of sleep. The condition occurs in approximately 11% and 4% of middle-aged men and middle-aged women, respectively. Polysomnography is a diagnostic procedure that involves the constant observation of oxygen saturation and unsaturation during sleep. Usually, positive airway pressure is considered a benchmark treatment for OSA. This review summarizes the recent developments and emerging evidence from molecular biology-based research studies that show that genetic factors have an influence on OSA. The genetic aspects of OSA that have been identified include heritability and other phenotypic co-factors such as anatomical morphology. It also draws attention to the results of a polymorphic-based study that was conducted to determine the causative single nucleotide mutations associated with obesity and adverse cardiovascular risk in OSA. However, the role of such mutations and their linkage to OSA can not yet be established. Nonetheless, a large body of evidence supports a strong association between inflammatory cytokine polymorphism and obesity in the development of OSA. There are also probable intermediate factors with several gene-gene interactions. Therefore, advanced applications and modern techniques should be applied to facilitate new findings and to minimize the risk of developing OSA.
Assuntos
Apneia Obstrutiva do Sono , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/genética , Polissonografia , Apneia Obstrutiva do Sono/genéticaRESUMO
Understanding the causes of the decline in bee population has attracted intensive attention worldwide. The indiscriminate use of agrochemicals is a persistent problem due to their physiological and behavioural damage to bees. Glyphosate and its commercial formulation stand out due to their wide use in agricultural areas and non-crop areas, such as parks, railroads, roadsides, industrial sites, and recreational and residential areas, but the mode of action of glyphosate on bees at the molecular level remains largely unelucidated. Here, we found that the numbers of differentially expressed genes and metabolites under glyphosate commercial formulation (GCF) stress were significantly higher in Apis cerana cerana than in Apis mellifera ligustica. Despite these differences, the number of differentially expressed transcripts increased following an increase in the GCF treatment time in both A. cerana cerana and A. mellifera ligustica. GCF exerted adverse impacts on the immune system, digestive system, nervous system, amino acid metabolism, carbohydrate metabolism, growth and development of both bee species by influencing their key genes and metabolites to some extent. The expression of many genes involved in immunity, agrochemical detoxification and resistance, such as antimicrobial peptides, cuticle proteins and cytochrome P450 families, was upregulated by GCF in both bee species. Collectively, our results indicate that both A. cerana cerana and A. mellifera ligustica strive to mitigate the pernicious effects caused by GCF by regulating detoxification and immune systems. Moreover, A. cerana cerana might be better able to withstand the toxic effects of GCF with lower fitness costs than A. mellifera ligustica. Our work will contribute to elucidating the deleterious physiological and behavioural impacts of GCF on bees.
Assuntos
Metabolômica , Transcriptoma , Animais , Abelhas , Glicina/análogos & derivados , GlifosatoRESUMO
To date, lateral differences of invasive breast cancer (IBrC) with respect to the angiogenic and hemostatic profiles were never studied. Here, we aimed to determine the relationship of tumor laterality with various clinical and pathological parameters including angiogenic and hemostatic profiles. A total of 92 women that were initially non-metastatic and treated by surgery were included in this single-center prospective study. Patients were grouped according to tumor localization. A four-year follow-up was accomplished in all patients with a 15.22% recurrence rate. An immunoassay of selected angiogenic and hemostatic parameters, as well as immunohistochemistry of estrogen and progesterone receptors, human epidermal growth factor receptor 2 (HER2), and Ki67, was comparatively performed in groups with right- and left-sided IBrC. The same analysis was carried out in a subgroup of patients with luminal A molecular subtype of cancer. Patients with right-sided tumors free of nodal involvement had a significantly longer overall survival compared to their left-sided counterparts (p = 0.0491). Additionally, right-sided tumors had a higher predisposition to be a luminal-A subtype of IBrC (p = 0.0016). Furthermore, 10% of left-sided tumors exhibited an overexpression of HER2, while only 2% patients suffering right-sided tumors displayed a positive score (p = 0.0357). Our findings revealed a significantly higher concentration of vascular endothelial growth factor (VEGF)-A (p = 0.0136), lower anti-angiogenic ratios (sVEGFR1/VEGF-A (p = 0.0208) and sVEGFR2/VEGF-A (p = 0.0068)), and elevated plasminogen activator inhibitor type 1 (PAI-1) (p = 0.0229) in patients with breast cancer localized in the left breast, regardless of the molecular subtype of IBrC. Our study showed that left-sided breast tumors without lymph node metastases demonstrate worse overall survival. Laterality of IBrC is associated with pro-angiogenic and pro-thrombotic conditions. We propose to consider laterality as a prognostic factor of IBrC.
RESUMO
A variety of amino acid substitutions in the NS3-4A protease of the hepatitis C virus lead to protease inhibitor (PI) resistance. Many of these significantly impair the replication fitness of the resistant variants in a genotype- and subtype-dependent manner, a critical factor in determining the probability with which resistant variants will persist. However, the underlying molecular mechanisms are unknown. Here, we present a novel residue-interaction network approach to determine how near-neighbor interactions of PI resistance mutations in NS3-4A can impact protease functional sites dependent on their genomic background. We constructed subtype-specific consensus residue networks for subtypes 1a and 1b from protease structure ensembles combined with biological properties of protein residues and evolutionary amino acid conservation. By applying local and global network topology analysis and visual exploration, we characterize PI resistance-associated sites and outline differences in near-neighbor interactions. We find local residue-interaction patterns and features at protease functional sites that are subtype specific. The noncovalent bonding patterns indicate higher fitness costs conferred by PI resistance mutations in a subtype 1b genomic background and explain the prevalence of Q80K and R155K in subtype 1a. Based on local residue interactions, we predict a subtype-specific role for the protease residue NS3-Q80 in molecular mechanisms related to the assembly of infectious virus particles that is supported by experimental data on the capacity of Q80K variants to replicate and produce infectious virus in subtype 1a and 1b cell culture.