Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2303586120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399375

RESUMO

The unique optical cycling efficiency of alkaline earth metal-ligand molecules has enabled significant advances in polyatomic laser cooling and trapping. Rotational spectroscopy is an ideal tool for probing the molecular properties that underpin optical cycling, thereby elucidating the design principles for expanding the chemical diversity and scope of these platforms for quantum science. We present a comprehensive study of the structure and electronic properties in alkaline earth metal acetylides with high-resolution microwave spectra of 17 isotopologues of MgCCH, CaCCH, and SrCCH in their 2Σ+ ground electronic states. The precise semiexperimental equilibrium geometry of each species has been derived by correcting the measured rotational constants for electronic and zero-point vibrational contributions calculated with high-level quantum chemistry methods. The well-resolved hyperfine structure associated with the 1,2H, 13C, and metal nuclear spins provides further information on the distribution and hybridization of the metal-centered, optically active unpaired electron. Together, these measurements allow us to correlate trends in chemical bonding and structure with the electronic properties that promote efficient optical cycling essential to next-generation experiments in precision measurement and quantum control of complex polyatomic molecules.

2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542326

RESUMO

4-[5-(Naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD) was extensively studied through stationary UV-vis absorption and fluorescence measurements in various solvents and solvent mixtures and by first-principles quantum chemical calculations. It was observed that while in polar solvents (e.g., methanol) only a single emission band emerged; the analyzed 1,3,4-thiadiazole derivative was capable of producing dual fluorescence signals in low polarity solvents (e.g., n-hexane) and certain solvent mixtures (e.g., methanol/water). As clearly follows from the experimental spectroscopic studies and theoretical modeling, the specific emission characteristic of NTBD is triggered by the effect of enol → keto excited-state intramolecular proton transfer (ESIPT) that in the case of solvent mixture is reinforced by aggregation of thiadiazole molecules. Specifically, the restriction of intramolecular rotation (RIR) due to environmental hindrance suppresses the formation of non-emissive twisted intramolecular charge transfer (TICT) excited keto* states. As a result, this particular thiadiazole derivative is capable of simultaneously producing both ESIPT and aggregation-induced emission (AIE).


Assuntos
Metanol , Tiadiazóis , Espectrometria de Fluorescência , Solventes/química , Prótons
3.
Anal Bioanal Chem ; 415(29-30): 7281-7295, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906289

RESUMO

The lack of specific and sensitive early diagnostic options for pancreatic cancer (PC) results in patients being largely diagnosed with late-stage disease, thus inoperable and burdened with high mortality. Molecular spectroscopic methodologies, such as Raman or infrared spectroscopies, show promise in becoming a leader in screening for early-stage cancer diseases, including PC. However, should such technology be introduced, the identification of differentiating spectral features between various cancer types is required. This would not be possible without the precise extraction of spectra without the contamination by necrosis, inflammation, desmoplasia, or extracellular fluids such as mucous that surround tumor cells. Moreover, an efficient methodology for their interpretation has not been well defined. In this study, we compared different methods of spectral analysis to find the best for investigating the biomolecular composition of PC cells cytoplasm and nuclei separately. Sixteen PC tissue samples of main PC subtypes (ductal adenocarcinoma, intraductal papillary mucinous carcinoma, and ampulla of Vater carcinoma) were collected with Raman hyperspectral mapping, resulting in 191,355 Raman spectra and analyzed with comparative methodologies, specifically, hierarchical cluster analysis, non-negative matrix factorization, T-distributed stochastic neighbor embedding, principal components analysis (PCA), and convolutional neural networks (CNN). As a result, we propose an innovative approach to spectra classification by CNN, combined with PCA for molecular characterization. The CNN-based spectra classification achieved over 98% successful validation rate. Subsequent analyses of spectral features revealed differences among PC subtypes and between the cytoplasm and nuclei of their cells. Our study establishes an optimal methodology for cancer tissue spectral data classification and interpretation that allows precise and cognitive studies of cancer cells and their subcellular components, without mixing the results with cancer-surrounding tissue. As a proof of concept, we describe findings that add to the spectroscopic understanding of PC.


Assuntos
Neoplasias Pancreáticas , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Pâncreas , Núcleo Celular , Neoplasias Pancreáticas
4.
Proc Natl Acad Sci U S A ; 117(25): 13945-13948, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513725

RESUMO

Coarse-grained modeling of conjugated polymers has become an increasingly popular route to investigate the physics of organic optoelectronic materials. While ultraviolet (UV)-vis spectroscopy remains one of the key experimental methods for the interrogation of these materials, a rigorous bridge between simulated coarse-grained structures and spectroscopy has not been established. Here, we address this challenge by developing a method that can predict spectra of conjugated polymers directly from coarse-grained representations while avoiding repetitive procedures such as ad hoc back-mapping from coarse-grained to atomistic representations followed by spectral computation using quantum chemistry. Our approach is based on a generative deep-learning model: the long-short-term memory recurrent neural network (LSTM-RNN). The latter is suggested by the apparent similarity between natural languages and the mathematical structure of perturbative expansions of, in our case, excited-state energies perturbed by conformational fluctuations. We also use this model to explore the level of sensitivity of spectra to the coarse-grained representation back-mapping protocol. Our approach presents a tool uniquely suited for improving postsimulation analysis protocols, as well as, potentially, for including spectral data as input in the refinement of coarse-grained potentials.

5.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834487

RESUMO

This article investigated the structure, and the spectroscopic and antimicrobial properties of mandelic acid and its alkali metal salts. The electron charge distribution and aromaticity in the analyzed molecules were investigated using molecular spectroscopy methods (FT-IR, FT-Raman, 1H NMR, and 13C NMR) and theoretical calculations (structure, NBO, HOMO, LUMO, energy descriptors, and theoretical IR and NMR spectra). The B3LYP/6-311++G(d,p) method was used in the calculations. The antimicrobial activities of mandelic acid and its salt were tested against six bacteria: Gram-positive Listeria monocytogenes ATCC 13932, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, and Loigolactobacillus backii KKP 3566; Gram-negative Escherichia coli ATCC 25922 and Salmonella Typhimurium ATCC 14028, as well as two yeast species, Rhodotorulla mucilaginosa KKP 3560 and Candida albicans ATCC 10231.


Assuntos
Anti-Infecciosos , Metais Alcalinos , Sais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Elétrons , Metais Alcalinos/química , Anti-Infecciosos/química , Análise Espectral Raman
6.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834848

RESUMO

In recent years, drug-resistant and multidrug-resistant fungal strains have been more frequently isolated in clinical practice. This phenomenon is responsible for difficulties in the treatment of infections. Therefore, the development of new antifungal drugs is an extremely important challenge. Combinations of selected 1,3,4-thiadiazole derivatives with amphotericin B showing strong synergic antifungal interactions are promising candidates for such formulas. In the study, microbiological, cytochemical, and molecular spectroscopy methods were used to investigate the antifungal synergy mechanisms associated with the aforementioned combinations. The present results indicate that two derivatives, i.e., C1 and NTBD, demonstrate strong synergistic interactions with AmB against some Candida species. The ATR-FTIR analysis showed that yeasts treated with the C1 + AmB and NTBD + AmB compositions, compared with those treated with single compounds, exhibited more pronounced abnormalities in the biomolecular content, suggesting that the main mechanism of the synergistic antifungal activity of the compounds is related to a disturbance in cell wall integrity. The analysis of the electron absorption and fluorescence spectra revealed that the biophysical mechanism underlying the observed synergy is associated with disaggregation of AmB molecules induced by the 1,3,4-thiadiazole derivatives. Such observations suggest the possibility of the successful application of thiadiazole derivatives combined with AmB in the therapy of fungal infections.


Assuntos
Antifúngicos , Tiadiazóis , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Antibacterianos , Tiadiazóis/farmacologia , Análise Espectral , Testes de Sensibilidade Microbiana
7.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 379-393, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35586980

RESUMO

To our knowledge, there is limited study on the relationship between the molecular structure of feed and nutrient availability in the ruminant system. The objective of this study is to use advanced vibrational molecular spectroscopy (attenuated total reflection [ATR]-Fourier transform infrared [FT/IR]) to reveal carbohydrate molecular structure properties of faba bean partitions (stem, leaf, whole pods [WP], and whole plant) and faba bean silage before and after rumen incubation in relation to nutrient availability and supply to dairy cattle. The study included the correlation between carbohydrate-related spectral profiles and chemical profiles, feed energy values, Cornell Net Carbohydrate and Protein System carbohydrate fractions, and rumen degradation parameters of faba bean samples (whole crop, stem, leaf, WP, and silage) before and after rumen incubation. FTIR spectra of faba bean sample before and after 12 and 24 h rumen incubations were collected with JASCO FT/IR-4200 with ATR at mid-IR range (ca. 4000-700 cm-1 ) with 128 scans and at 4 cm-1 resolution. The univariate molecular spectral analysis was carried out using OMNIC software. The results show that ATR-FT/IR spectroscopic technique could detect the change of microbial digestion to carbohydrate-related molecular structure. The spectral parameters of feed rumen incubation residues had a stronger correlation with less degradable carbohydrate fractions (neutral detergent fiber, acid detergent fiber, acid detergent lignin, hemicellulose, and cellulose) while spectral profiles of original faba samples had a stronger correlation with easily degradable carbohydrate fractions (starch). In conclusion, rumen degradation of carbohydrate contents can be reflected in the change of its molecular spectral profiles. The study shows that vibrational molecular spectroscopy (ATR-FT/IR) shows high potential as a fast analytical tool to evaluate and predict nutrient supply in the ruminant system.


Assuntos
Vicia faba , Bovinos , Animais , Silagem/análise , Rúmen/metabolismo , Estrutura Molecular , Detergentes/metabolismo , Ração Animal/análise , Carboidratos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/veterinária , Ruminantes , Nutrientes , Digestão
8.
Crit Rev Food Sci Nutr ; 62(6): 1453-1465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33249882

RESUMO

The traditional wet chemistry analysis is to use combination of specific chemical reactions to quantify a group of compounds with similar chemical and nutritional properties. However, plant cell wall complex is not uniform in terms of chemical, physical or nutritional characteristics and the digestion progress is achieved by a series of enzymatic hydrolysis of specific chemical bonds which cannot be revealed by wet chemistry analysis. Synchrotron-based and globar-sourced mid-infrared spectroscopy instead utilizing the unique absorption of mid-infrared light at different frequencies and more information about specific chemical bonds can be revealed. As a result, taking spectral change during digestion into consideration may give some insight about nutritional utilization features. However, the utilization of synchrotron-based and globar-sourced mid-infrared spectroscopy on feed and food nutritional research is limited. Therefore, the aim of this study is to provide idea about how to systematically study the nutritional and spectral structure feature of faba bean with traditional and advanced synchrotron-based and globar-sourced vibrational molecular spectroscopy. The study reviews (1) Utilization of faba bean for human and animal consumption; (2) Traditional evaluation methods for faba bean nutritional characteristics and (3) Contribution of synchrotron-based and globar-sourced mid-infrared (Mid-IR) spectroscopy techniques to evaluate faba bean structural and molecular properties.


Assuntos
Síncrotrons , Vicia faba , Ração Animal/análise , Animais , Humanos , Espectrofotometria Infravermelho
9.
Proc Natl Acad Sci U S A ; 116(9): 3454-3459, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755528

RESUMO

Mid-infrared high-resolution spectroscopy has proven an invaluable tool for the study of the structure and dynamics of molecules in the gas phase. The advent of frequency combs advances the frontiers of precise molecular spectroscopy. Here we demonstrate, in the important 3-µm spectral region of the fundamental CH stretch in molecules, dual-comb spectroscopy with experimental coherence times between the combs that exceed half an hour. Mid-infrared Fourier transform spectroscopy using two frequency combs with self-calibration of the frequency scale, negligible contribution of the instrumental line shape to the spectral profiles, high signal-to-noise ratio, and broad spectral bandwidth opens up opportunities for precision spectroscopy of small molecules. Highly multiplexed metrology of line shapes may be envisioned.

10.
Sci Technol Adv Mater ; 23(1): 140-160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185390

RESUMO

Since the first report on truly two-dimensional (2D) magnetic materials in 2017, a wide variety of merging 2D magnetic materials with unusual physical characteristics have been discovered and thus provide an effective platform for exploring the associated novel 2D spintronic devices, which have been made significant progress in both theoretical and experimental studies. Herein, we make a comprehensive review on the recent scientific endeavors and advances on the various engineering strategies on 2D ferromagnets, such as strain-, doping-, structural- and electric field-engineering, toward practical spintronic applications, including spin tunneling junctions, spin field-effect transistors and spin logic gate, etc. In the last, we discuss on current challenges and future opportunities in this field, which may provide useful guidelines for scientists who are exploring the fundamental physical properties and practical spintronic devices of low-dimensional magnets.

11.
Crit Rev Food Sci Nutr ; 61(19): 3256-3266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32787447

RESUMO

This review aims to provide research update and progress on applications of advanced molecular spectroscopy to current research on canola related bio-processing technology, molecular structure, and nutrient utilization and availability. The studies focused on how inherent molecular structure changes affect nutritional quality of canola and its co-products from bio-processing. The molecular spectroscopic techniques (SR-IMS, DRIFT, ATR-FTIR) used for molecular structure and nutrition association were reviewed, including the synchrotron radiation with infrared microspectroscopy, the synchrotron radiation with soft x-ray microspectroscopy, the diffuse reflectance infrared Fourier transform spectroscopy, the grading near infrared reflectance spectroscopy, and the Fourier transform infrared vibrational spectroscopy. Nutritional evaluation with other techniques in association with molecular structure was also reviewed. This study provides updated research progress on application of molecular spectroscopy in combination with various nutrition evaluation techniques to current research in the canola-related bio-oil/bio-energy processing and nutrition sciences.


Assuntos
Ração Animal , Nutrientes , Ração Animal/análise , Estrutura Molecular , Valor Nutritivo , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Eur Biophys J ; 50(8): 1083-1101, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34515830

RESUMO

This work reports on biophysical insights into the excited state intramolecular proton transfer (ESIPT) processes taking place in three 1,3,4-thiadiazole derivatives that served as model compounds, on which electronic absorption, fluorescence, Fourier-transform infrared spectroscopy (FTIR), surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS) studies were performed. The fluorescence spectra recorded in various solvents revealed an interesting dual fluorescence effect. In molecules in their monomeric form, the effect is associated with the ESIPT phenomenon, and may be further enhanced by aggregation-related effects, such as aggregation-induced emissions. Other spectroscopic studies on the selected molecules in a liposomal medium as a model revealed that, in a biomimetic environment, they can exist in both monomeric and aggregated forms. In both cases, however, the effects observed are closely related to the lipid's main phase transition temperature and the structure of the molecule. Introduction of specific substituents to the phenyl moiety either allows or prevents proton transfer from occurring in the excited state. The hydrophobicity changes in a lipid environment may result in an emergence of specific molecular forms and therefore either facilitate or hinder ESIPT processes. SPR and EIS confirmed the significant hydrophobicity changes in the model lipid systems, while FTIR measurements revealed a notable influence of 1,3,4-thiadiazoles on the fluidity of liposomal membranes. The results obtained clearly show that the thiadiazole derivatives are very good model molecules for studying hydrophobic-hydrophilic environments, and particularly with polymers or liposomes used as drug delivery systems.


Assuntos
Prótons , Tiadiazóis , Lipossomos , Espectrometria de Fluorescência
13.
Sci Technol Adv Mater ; 22(1): 160-172, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33762891

RESUMO

Rare-earth-doped nanoparticles (NPs), such as NaGdF4 nanocrystals doped with light-emitting rare earth ions, are promising bimodal probes that allow the integration of over 1000 nm near-infrared (OTN-NIR; NIR-II/III) fluorescence imaging and magnetic resonance imaging (MRI) of live bodies. A precise control of the particle size is the key factor for achieving a high signal-to-noise ratio in both NIR fluorescence and MR images and for regulating their function in the body. In this study, size-controlled NaGdF4:Yb3+, Er3+ NPs prepared by stepwise crystal growth were used for in vivo bimodal imaging. Hexagonal NaGdF4:Yb3+,Er3+ NPs coated with poly(ethylene glycol)-poly(acrylic acid) block copolymer, with hydrodynamic diameters of 15 and 45 nm, were prepared and evaluated as bimodal NPs for OTN-NIR fluorescence imaging and MRI. Their longitudinal (T 1) and transverse (T 2) relaxation rates at the static magnetic field strength of 1.0 T, as well as their cytotoxicity towards NIH3T3 cell lines, were evaluated and compared to study the effect of size. Using these particles, blood vessel visualization was achieved by MRI, with the highest relaxometric ratio (r 1/r 2) of 0.79 reported to date for NaGdF4-based nanoprobes (r 1 = 19.78 mM-1 s-1), and by OTN-NIR fluorescence imaging. The results clearly demonstrate the potential of the size-controlled PEG-modified NaGdF4:Yb3+,Er3+ NPs as powerful 'positive' T 1-weight contrast MRI agents and OTN-NIR fluorophores.

14.
Sci Technol Adv Mater ; 22(1): 810-848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992499

RESUMO

Advancing the upconversion materials field relies on accurate and contrastable photoluminescence efficiency measurements, which are characterised by the absolute upconversion quantum yield (UCQY). However, the methodology for such measurements cannot be extrapolated directly from traditional photoluminescence quantum yield techniques, primarily due to issues that arise from the non-linear behaviour of the UC process. Subsequently, no UCQY standards exist, and significant variations in their reported magnitude can occur between laboratories. In this work, our aim is to provide a path for determining and reporting the most reliable UCQYs possible, by addressing all the effects and uncertainties that influence its value. Here the UCQY standard, at a given excitation power density, is defined under a range of stated experimental conditions, environmental conditions, material properties, and influential effects that have been estimated or corrected for. A broad range of UCQYs reported for various UC materials are scrutinized and categorized based on our assertion of the provided information associated with each value. This is crucial for improved comparability with other types of photoluminescent materials, and in addition, the next generation of UC materials can be built on top of these reliable standards.

15.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299335

RESUMO

Silver nanoparticles (AgNPs) were synthesized using aqueous honey solutions with a concentration of 2%, 10%, and 20%-AgNPs-H2, AgNPs-H10, and AgNPs-H20. The reaction was conducted at 35 °C and 70 °C. Additionally, nanoparticles obtained with the citrate method (AgNPs-C), while amphotericin B (AmB) and fluconazole were used as controls. The presence and physicochemical properties of AgNPs was affirmed by analyzing the sample with ultraviolet-visible (UV-Vis) and fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The 20% honey solution caused an inhibition of the synthesis of nanoparticles at 35 °C. The antifungal activity of the AgNPs was evaluated using opportunistic human fungal pathogens Candida albicans and Candida parapsilosis. The antifungal effect was determined by the minimum inhibitory concentration (MIC) and disc diffusion assay. The highest activity in the MIC tests was observed in the AgNPs-H2 variant. AgNPs-H10 and AgNPs-H20 showed no activity or even stimulated fungal growth. The results of the Kirby-Bauer disc diffusion susceptibility test for C. parapsilosis strains indicated stronger antifungal activity of AgNPs-H than fluconazole. The study demonstrated that the antifungal activity of AgNPs is closely related to the concentration of honey used for the synthesis thereof.


Assuntos
Apiterapia/métodos , Candida/efeitos dos fármacos , Mel , Nanopartículas Metálicas/química , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Nanopartículas Metálicas/administração & dosagem , Testes de Sensibilidade Microbiana , Prata/química , Prata/farmacologia
16.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770895

RESUMO

DNA covers the genetic information in all living organisms. Numerous intrinsic and extrinsic factors may influence the local structure of the DNA molecule or compromise its integrity. Detailed understanding of structural modifications of DNA resulting from interactions with other molecules and surrounding environment is of central importance for the future development of medicine and pharmacology. In this paper, we review the recent achievements in research on DNA structure at nanoscale. In particular, we focused on the molecular structure of DNA revealed by high-resolution AFM (Atomic Force Microscopy) imaging at liquid/solid interfaces. Such detailed structural studies were driven by the technical developments made in SPM (Scanning Probe Microscopy) techniques. Therefore, we describe here the working principles of AFM modes allowing high-resolution visualization of DNA structure under native (liquid) environment. While AFM provides well-resolved structure of molecules at nanoscale, it does not reveal the chemical structure and composition of studied samples. The simultaneous information combining the structural and chemical details of studied analyte allows achieve a comprehensive picture of investigated phenomenon. Therefore, we also summarize recent molecular spectroscopy studies, including Tip-Enhanced Raman Spectroscopy (TERS), on the DNA structure and its structural rearrangements.


Assuntos
DNA/química , DNA/ultraestrutura , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Análise Espectral , Microscopia de Força Atômica/métodos , Estrutura Molecular , Solventes , Análise Espectral/métodos , Análise Espectral Raman/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-33100382

RESUMO

The λ = 2.06 µm absorption band of CO2 is widely used for the remote sensing of atmospheric carbon dioxide, making it relevant to many important top-down measurements of carbon flux. The forward models used in the retrieval algorithms employed in these measurements require increasingly accurate line intensity and line shape data from which absorption cross-sections can be computed. To overcome accuracy limitations of existing line lists, we used frequency-stabilized cavity ring-down spectroscopy to measure 39 transitions in the 12C16O2 absorption band. The line intensities were measured with an estimated relative combined standard uncertainty of u r = 0.08 %. We predicted the J-dependence of the measured intensities using two theoretical models: a one-dimensional spectroscopic model with Herman-Wallis rotation-vibration corrections, and a line-by-line ab initio dipole moment surface model [Zak et al. JQSRT 2016;177:31-42]. For the second approach, we fit only a single factor to rescale the theoretical integrated band intensity to be consistent with the measured intensities. We find that the latter approach yields an equally adequate representation of the fitted J-dependent intensity data and provides the most physically general representation of the results. Our recommended value for the integrated band intensity equal to 7.183 × 10-21 cm molecule-1 ± 6 × 10-24 cm molecule-1 is based on the rescaled ab initio model and corresponds to a fitted scale factor of 1.0069 ± 0.0002. Comparisons of literature intensity values to our results reveal systematic deviations ranging from -1.16 % to +0.33 %.

18.
Sci Technol Adv Mater ; 21(1): 11-24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082440

RESUMO

High pressure/high-temperature microreactors based on silicon-Pyrex® microfabrication technologies have attracted increasing interest in various applications providing optical access in high-pressure flow processes. However, they cannot be coupled to infrared spectroscopy due to the limited optical transparency (up to ~2.7 µm in the infrared region) of the Pyrex® glass substrate employed in the microreactor fabrication. To address this limitation, the alternative approach proposed in this work consists in replacing the Pyrex® glass in the microreactor by a mid-infrared transparent glass with thermal and mechanical properties as close as possible or even better to those of the Pyrex®, including its ability for silicon-wafers coupling by the anodic bonding process. Glasses based on germanate GeO2, known for their excellent transmission in the mid-infrared range and thermal/thermo-mechanical properties, have been thus evaluated and developed for this purpose. The optical, mechanical, thermal and electrical conductivity properties of adapted glass compositions belonging to five vitreous systems have been systemically investigated. The glass composition 70GeO2-15Al2O3-10La2O3-5Na2O (mol.%) was defined as the best candidate and produced in large plates of 50 mm diameter and 1 mm thickness. Anodic bonding tests with Si-wafers have been then successfully conducted, paving the way for the development of fully mid-infrared transparent silicon-glass microreactors.

19.
Sci Technol Adv Mater ; 21(1): 471-481, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32939172

RESUMO

The development of novel magnetic nanoparticles (MNPs) with satisfactory biocompatibility for biomedical applications has been the subject of extensive exploration over the past two decades. In this work, we synthesized superparamagnetic iron oxide MNPs coated with polystyrene sulfonic acid (PSS-MNPs) and with a conventional co-precipitation method. The core size and hydrodynamic diameter of the PSS-MNPs were determined as 8-18 nm and 50-200 nm with a transmission electron microscopy and dynamic light scattering, respectively. The saturation magnetization of the particles was measured as 60 emu g-1 with a superconducting quantum-interference-device magnetometer. The PSS content in the PSS-MNPs was 17% of the entire PSS-MNPs according to thermogravimetric analysis. Fourier-transform infrared spectra were recorded to detect the presence of SO3 - groups, which confirmed a successful PSS coating. The structural properties of the PSS-MNPs, including the crystalline lattice, composition and phases, were characterized with an X-ray powder diffractometer and 3D nanometer-scale Raman microspectrometer. MTT assay and Prussian-blue staining showed that, although PSS-MNPs caused no cytotoxicity in both NIH-3T3 mouse fibroblasts and SK-HEP1 human liver-cancer cells up to 1000 µg mL-1, SK-HEP1 cells exhibited significantly greater uptake of PSS-MNPs than NIH-3T3 cells. The low cytotoxicity and high biocompatibility of PSS-MNPs in human cancer cells demonstrated in the present work might have prospective applications for drug delivery.

20.
Sci Technol Adv Mater ; 21(1): 79-91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158509

RESUMO

Several current topics are introduced in this review, with particular attention to highly proton-conductive polymer thin films with organized structure and molecularly oriented structure. Organized structure and molecularly oriented structure are anticipated as more promising approaches than conventional less-molecular-ordered structure to elucidate mechanisms of high proton conduction and control proton conduction. This review introduces related polymer materials and molecular design using lyotropic liquid crystals and hydrogen bond networks for high proton conduction. It also outlines the use of substrate surfaces and external fields, such as pressure and centrifugal force, for organizing structures and molecularly oriented structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA